Читаем Математика. Утрата определенности. полностью

Напоследок я хотел бы подчеркнуть, сколь мало новейшая история оправдывает благочестивые пошлости прорицателей краха, регулярно предупреждающих нас о гибельных последствиях, которые математика неминуемо навлечет на себя, если откажется от применений к другим наукам. Я не собираюсь утверждать, что тесный контакт с иными областями, такими, как теоретическая физика, невыгоден для обеих сторон. Однако совершенно ясно, что из всех поразительных достижений, о которых я рассказывал, ни одно, за возможным исключением теории распределений, ни в малейшей степени не пригодно для физических применений. Даже в теории уравнений с частными производными сейчас упор больше делается на «внутренние» и структурные проблемы, чем на вопросы, имеющие прямое физическое значение. Даже если бы математика насильно была отрезана от всех прочих каналов человеческой деятельности, в ней достало бы на столетия пищи для размышлений над большими проблемами, которые мы должны еще решить в нашей собственной науке.

([115], с. 11.)

Хотя Дьедонне отчетливо представлял себе нескончаемую вереницу проблем чистой математики, он — надо отдать ему должное — не обошел молчанием тезис о том, что всякое творение чистой математики в конечном счете находит применение. Приведя внушительный перечень исследований по чистой математике, и в частности по теории чисел, Дьедонне заметил: «Трудно представить, что подобные результаты окажутся применимыми к какой-нибудь физической проблеме». Выступая в защиту чистой математики в целом, Дьедонне вместе с тем не мог не заметить, что хвастливые заявления математиков о ценности чистой математики для естественных наук представляют собой своего рода «мелкое жульничество». По словам Дьедонне, чистые математики не пожалеют сил, чтобы доказать единственность решения какой-нибудь проблемы, но не ударят палец о палец, чтобы попытаться найти это решение. Физик же знает, что решение существует и единственно (Земля не обращается вокруг Солнца по двум различным орбитам), но ему необходимо знать истинную орбиту.

Более реалистических взглядов на значимость той математики, которой следовало бы заниматься, придерживался человек, который по своим заслугам в области чистой математики не уступал Дьедонне, — швед Ларе Гординг. Свои взгляды он изложил в докладе на Международном конгрессе математиков в 1958 г.:

Перейти на страницу:

Похожие книги