Физик получает очень мало помощи от математика. На каждого математика, способного понять прикладные проблемы, как фон Нейман, и внести реальный вклад в их решение, приходится двадцать математиков, не проявляющих к прикладным проблемам ни малейшего интереса, работающих либо в областях, далеких от физики, либо уделяющих основное внимание более старым и знакомым разделам математической физики. Неудивительно, что при взгляде на математиков физик испытывает такое чувство, будто они сошли с пути, который в прошлом привел к величию математики, и вряд ли ступят на него до тех пор, пока решительно не войдут в основной поток развития математической физики, потому что именно ей мы обязаны наиболее плодотворными достижениями математики в прошлом… Это единственный путь, способный привести современного математика к величию.
Забвение интересов физики было избрано темой большой лекции [116], с которой в 1972 г. выступил перед математиками известный американский физик Фримен Джон Дайсон. И прежде, и теперь, отметил Дайсон, математикам неоднократно предоставлялась возможность внести свой вклад в решение физических проблем первостепенной важности, но математики неизменно упускали свей шанс. Некоторые из этих проблем, полностью или частично, каким-то образом все же проникли в математику, но математикам не известно ни их происхождение, ни физическая значимость. Математики следуют в произвольном направлении и не пытаются даже осмысливать собственные достижения. По словам Дайсона, брак между математикой и физикой закончился разводом.
В XX в. разрыв между математикой и физикой ускорился. В наше время нередко приходится слышать и читать заявления математиков о том, что их наука не зависит от естественных наук. Математики теперь, не колеблясь, открыто признают, что их интересы сосредоточены на чистой математике, а физика им безразлична. Хотя точная статистика неизвестна, но можно полагать, что основная часть работающих сегодня математиков не сведущи в физике и спокойно пребывают в этом благословенном состоянии. Несмотря на опыт истории и на критику, тенденция к абстракции, к обобщению ради обобщения и к изучению произвольно выбранных проблем сохраняется в математике и поныне. Разумная потребность в изучении целого класса проблем с целью более глубокого понимания частных случаев и в абстракции с целью выявления сущности проблемы стала не более чем предлогом для обобщений ради обобщений и абстракций ради абстракций.
За много веков человек создал такие великие построения, как евклидова геометрия, птолемеева система мира, гелиоцентрическая система мира, механика Ньютона, теория электромагнитного поля, а позднее — теория относительности и квантовая теория. Математика, как известно, является неотъемлемой частью всех этих и многих других важных и мощных теорий, их основой и их сущностью. Математические теории позволили нам многое узнать о природе и охватить в понятных теоретических схемах множество внешне различных явлений. Математические теории дали человечеству возможность обнаружить порядок и план повсюду в природе, где только их можно было найти; они помогли нам частично или полностью овладеть обширными областями знания.