Читаем Математика. Утрата определенности. полностью

Безразличие к богу и даже лишение его роли творца законов мироздания, а также кантианские взгляды на эти законы как якобы присущие самой природе человеческого разума «вызвали реакцию» со стороны творца всего сущего. Бог решил наказать кантианцев, и особенно этих самодовольных, погрязших в гордыне и чрезмерно самоуверенных математиков, и «подбросил» им неевклидову геометрию, возникновение которой нанесло сокрушительный удар по достижениям человеческого разума, всемогущего и, казалось бы, не нуждающегося ни в чьей помощи. 

Хотя к началу XIX в. роль бога становилась все менее ощутимой и некоторые радикально настроенные философы, например Юм, отрицали все истины, математики того времени по-прежнему продолжали верить в истинность собственно математики и математических законов природы. Евклидова геометрия была наиболее почитаемым разделом математики не только потому, что именно с нее началось дедуктивное построение математических дисциплин, но и по той причине, что ее теоремы, как было установлено на протяжении более двух тысячелетий, полностью соответствовали результатам физических исследований. И именно евклидову геометрию «бог» избрал объектом нападения. 

Одна из аксиом евклидовой геометрии издавна беспокоила математиков, однако совсем не потому, что они сомневались в ее истинности. Сомнения вызывала у них лишь формулировка аксиомы. Мы имеем в виду аксиому о параллельных, или, как ее часто называют, пятый постулат Евклида. Сам Евклид сформулировал пятый постулат следующим образом: 

Если прямая, падающая на две прямые [рис. 4.1], образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти две прямые неограниченно встретятся с той стороны, где углы меньше двух прямых.

([25], книги I-VI, с. 15.)

Рис. 4.1. Пятый постулат Евклида.

Иначе говоря, если углы 1

и 2 в сумме меньше 180°, то прямые а и b, продолженные достаточно далеко, пересекутся.

У Евклида были веские основания сформулировать аксиому о параллельных именно так, а не иначе. Он мог бы утверждать, например, что если сумма углов 1 и 2 равна 180°, то прямые а и b

параллельны. Но Евклид явно боялся предположить, что могут существовать бесконечные прямые, которые никогда не пересекаются: любое утверждение о бесконечных прямых не подкреплялось опытом, в то время как аксиомы по определению должны были быть самоочевидными истинами о физическом мире. Но опираясь на свою аксиому о параллельных и другие аксиомы, Евклид доказал существование параллельных. 

Математики считали, что аксиома о параллельных в том виде, как ее сформулировал Евклид, слишком сложна. Ей недоставало простоты других аксиом. Должно быть, и сам Евклид был недоволен своим вариантом аксиомы о параллельных, ибо обратился к ней, лишь доказав все теоремы, какие только смог вывести без ее использования. 

Со временем стала жизненно важной сходная проблема, над которой поначалу задумывались лишь немногие. Она сводилась к вопросу о том, существуют ли в физическом пространстве бесконечные прямые. Евклид достаточно осторожно постулировал лишь, что конечный отрезок прямой можно продолжить сколь угодно далеко, — но ведь даже и продолженный отрезок все равно оставался конечным. Тем не менее из рассуждений Евклида следовало, что бесконечные прямые существуют: если бы прямые были конечными, то их нельзя было бы продолжать сколь угодно далеко. 

Первые попытки решить проблему, связанную с аксиомой Евклида о параллельных, были предприняты еще математиками Древней Греции. Эти попытки имели двоякую природу. Одни из них сводились к замене аксиомы о параллельных какой-нибудь более очевидной аксиомой. Другие были направлены на то, чтобы вывести аксиому о параллельных из девяти остальных аксиом Евклида: если бы удалось доказать, что пятый постулат Евклида в действительности представляет собой теорему, то все трудности отпали бы сами собой. На протяжении более двух тысячелетий многие десятки крупнейших математиков, не говоря уже о математиках меньшего ранга, безуспешно пытались решить проблему параллельных, предпринимая бессчетные попытки как первого, так и второго рода. История этой проблемы уходит корнями в глубокую древность и изобилует деталями, понятными лишь профессионалу. Мы опустим здесь ее потому, что ей посвящена обширная литература{44}, и, кроме того, этот вопрос не имеет прямого отношения к интересующей нас теме. 

Перейти на страницу:

Похожие книги