Читаем Математика. Утрата определенности. полностью

Диссертация Клюгеля привлекла внимание одного из крупнейших математиков XVIII в. — Иоганна Генриха Ламберта (1728-1777), и тот также принялся размышлять над проблемой параллельных. В своей книге «Теория параллельных прямых» (написанной в 1766 г. и опубликованной в 1786 г.) Ламберт, подобно Саккери, рассмотрел две альтернативные возможности. И он также обнаружил, что гипотеза, согласно которой через точку P вне прямой l (см. рис. 4.3) не проходит ни одна прямая, параллельная прямой

l, приводит к противоречию. Но в отличие от Саккери Ламберт не считал, что альтернативная гипотеза (согласно которой через точку P проходят по крайней мере две прямые, параллельные прямой l) приводит к противоречию. Более того, Ламберт понял, что любой набор гипотез, который не приводит к противоречию, порождает некую геометрию. Такая геометрия логически непротиворечива, хотя и не имеет прямого отношения к реальным, физическим фигурам.{47}
 

Работа Ламберта и некоторых других авторов, в частности учителя Гаусса, профессора Гёттингенского университета Абрахама Г. Кестнера (1719-1800), заслуживают особого упоминания. Эти ученые были убеждены, что пятый постулат Евклида невозможно доказать, исходя из девяти остальных его аксиом, т.е. утверждали, что аксиома о параллельных независима от остальных аксиом. Кроме того, Ламберт был убежден, что, приняв альтернативную аксиому, противоречащую аксиоме Евклида, можно построить логически непротиворечивую геометрию, хотя и не высказал каких-либо утверждений о применимости такой геометрии. Все трое — Клюгель, Ламберт и Кестнер — близко подошли к признанию возможности неевклидовой геометрии. 

Самым выдающимся математиком среди тех, кто работал над решением проблемы, возникшей в связи с аксиомой Евклида о параллельных, был Гаусс. Он прекрасно знал о безуспешных попытках доказать или опровергнуть аксиому о параллельных, ибо такого рода сведения не составляли секрета для гёттингенских математиков. Историю проблемы параллельных досконально знал учитель Гаусса Кестнер. Много лет спустя (1831) Гаусс сообщил своему другу Шумахеру, что еще в 1792 г. (когда Гауссу было всего лишь 15 лет) он понял возможность существования логически непротиворечивой геометрии, в которой постулат Евклида о параллельных не выполняется. Но вплоть до 1799 г. Гаусс не прекращал попыток вывести постулат Евклида о параллельных из других, более правдоподобных допущений и считал евклидову геометрию истинной геометрией физического пространства, хотя и сознавал возможность существования других логически непротиворечивых — неевклидовых — геометрий. Однако в письме Гаусса к другу и собрату по профессии Фаркашу Бойаи от 16 декабря 1799 г. мы читаем: 

Я лично далеко продвинулся в моих работах (хотя другие занятия, совершенно не связанные с этой темой, оставляют мне для этого мало времени). Однако дорога, которую я выбрал, ведет скорее не к желательной цели, а к тому, чтобы сделать сомнительной истинность геометрии. Правда, я достиг многого, что для большинства могло бы сойти за доказательство, но это не доказывает в моих глазах ровно ничего; например, если бы кто-либо мог доказать, что возможен такой прямоугольный треугольник, площадь которого больше любой заданной, то я был бы в состоянии строго доказать всю геометрию. 

Большинство сочтет это за аксиому, я же нет. Так, могло бы быть, что площадь всегда будет ниже некоторого данного предела, сколь бы удаленными друг от друга в пространстве ни были предположены три вершины треугольника.

([24], с. 101-102.) 

Примерно с 1813 г. Гаусс начал работать над своей неевклидовой геометрией, которую он называл сначала антиевклидовой, затем астральной

(т.е. звездной — возможно, выполняющейся на далеких звездах; это название принадлежало Фердинанду Карлу Швейкарту (1780-1859), независимо от Гаусса пришедшему к тем же идеям) и, наконец, неевклидовой геометрией. Гаусс пришел к убеждению, что построенная им геометрия логически непротиворечива и применима к физическому миру. 

В письме от 8 ноября 1824 г. к своему другу Францу Адольфу Тауринусу (1794-1874) Гаусс сообщал: 

Перейти на страницу:

Похожие книги