Читаем Математики, шпионы и хакеры полностью

DINER’S CLUB

Одной из первых кредитных карт, получивших широкое признание, была карта Diner's Club. Автором идеи был американец Фрэнк Макнамара. В 1950 г. ему удалось убедить различные рестораны принимать оплату безналично с помощью персональных гарантированных кредитных карт, которые Макнамара распространил среди своих лучших клиентов. Наиболее часто в первые десятилетия кредитными картами расплачивались за обеды американские коммивояжеры, будучи в дороге.

* * *

Например, пусть карта имеет следующий номер:

1234 5678 9012 3452

По алгоритму Луна имеем:

1∙2 = 2

3∙2 = 6

5∙2 = 10 => 1 + 0 = 1

7∙2=14 => 1 + 4 = 5 (или 14-9 = 5)

9∙2 = 18 => 1 + 8 = 9

1∙2 = 2

3∙2 = 6

5∙2 = 10 => 1 + 0 = 1

Далее найдем сумму результатов и цифр на четных позициях:

2 + 6 + 1 + 5 + 9 + 2 + 6 + 1 = 32

2 + 4 + 6 + 8 + 0 + 2 + 4 + 2 = 28

32 + 28 = 60

Результат равен 60, это число кратно 10. Поэтому номер карты является действительным.

Алгоритм Луна можно применить другим способом: номер карты ABCD EFGH IJKL MNOP является правильным, если удвоенная сумма цифр на нечетных позициях и сумма цифр на четных позициях плюс количество цифр на нечетных позициях, которые больше, чем 4, кратно 10. Это правило записывается так:

2 (A + C + E + G + 1 + К + М + О) + (B + D + F + H + J + L + N + P) + (количество цифр на нечетных позициях, которые больше, чем 4) = 0 (mod 10).

Применим это правило к предыдущему примеру:

1234 5678 9012 3452

2 (1 + 3 + 5 + 7 + 9 + 1 + 3 + 5) + (2 + 4 + 6 + 8 + 0 + 2 + 4 + 2) + (4) = 100  0 (mod 10).

Снова мы убедились, что номер кредитной карты является действительным, и показали, что на первый взгляд случайные номера карт соответствуют строгому математическому стандарту.

* * *

ПРИМЕР РАСЧЕТА КОНТРОЛЬНОЙ ЦИФРЫ КРЕДИТНОЙ КАРТЫ В EXCEL

Номер кредитной карты состоит из 15 цифр плюс контрольная цифра. Цифры сгруппированы в четыре группы по четыре цифры. Контрольная цифра (КЦ) рассчитывается следующим образом.


* * *

Можно ли восстановить цифру, отсутствующую в номере карты? Да, если мы имеем дело с действительной кредитной картой. Найдем, например, цифру X в номере 4539 4512 03X8 7356.

Начнем с умножения на 2 цифр на нечетных позициях (4–3—4—1–0—X—7–5), сразу преобразуя результат к одной цифре.

4∙2 = 8

3∙2 = 6

4∙2 = 8

1∙2 = 2

0∙2 = 0

X∙2 = 2Х

7∙2 = 14, 14 — 9 = 5

5∙2 = 10, 10 — 9 = 1.

Складывая цифры, стоящие на четных позициях, и новые цифры на нечетных, получим:

30 + 41+ 2Х = 71 + 2Х.

Мы знаем, что число (71 + 2Х) должно быть кратно 10.

Если значение X меньше или равно 4, то для таких X (71 + 2Х) никогда не будет кратно 10.

Если же значение X больше 4, то кратно 10 должно быть выражение (71 + 2Х + 1), так как X стоит на нечетной позиции. Видим, что выражение (72 + 2Х) кратно 10 только при X = 9.

Следовательно, мы нашли потерянную цифру 9, и полный номер кредитной карты: 4539451203987356.


Штрихкоды

Первая система штрихкодов была запатентована 7 октября 1952 г. американцами Норманом Вудландом и Бернардом Сильвером. Первые версии штрихкодов отличались от сегодняшних. Вместо привычных нам линий Вудланд и Сильвер придумали концентрические круги. Впервые штрихкоды начали официально использоваться в 1974 г. в магазине города Трой, штат Огайо.

Современные штрихкоды представляют собой последовательность черных полос (которые кодируются как 1 в двоичной системе) и пробелов между ними (которые кодируются как 0). Штрихкоды используются для идентификации физических объектов. Штрихкоды, как правило, печатаются на этикетках и считываются оптическими устройствами. Это устройства, похожие на сканер, которые измеряют отраженный свет и преобразуют темные и светлые области в буквенно-цифровой код, который затем посылается на компьютер. Существует множество стандартов для штрихкодов:



Толщина штрихов и пробелов в штрихкоде соответствует двоичным цифрам.


Code 128, Code 39, Codabar, EAN (этот стандарт появился в 1976 г. в двух версиях, состоящих из 8 и 13 цифр соответственно) и UPC (Universal Product Code — универсальный код товара, используемый в основном в США и доступный также в двух версиях из 12 и 8 цифр соответственно). Наиболее распространенной является 13-значная версия EAN. Несмотря на разнообразие стандартов, штрихкоды позволяют идентифицировать любой продукт в любой части мира быстро и без существенных ошибок.




Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука