Читаем Математики, шпионы и хакеры полностью

QR-КОД

В 1994 г. японская компания Denso-Wave разработала графическую систему шифрования для идентификации автомобильных деталей на сборочной линии. Система была названа QR (Quick Response — «быстрый отклик») из-за скорости, с которой информация может быть прочитана машинами, предназначенными для этой цели, и стала использоваться не только на автомобильных заводах. Всего несколько лет спустя большинство японских мобильных телефонов могли считывать информацию, содержащуюся в коде. QR-код является матричным кодом, представляющим собой некоторое количество черных и белых квадратов, расположенных в виде большого квадрата. Квадраты соответствуют двоичным значениям, 0 или 1, и, следовательно, работают аналогично штрихкодам, хотя двумерность кода позволяет хранить намного больше информации.



QR-код, составленный из 37 рядов, для университета Осаки, Япония

Глава 5. Общедоступная тайна: криптография с открытым ключом

При быстром развитии вычислительной техники криптография вовсе не игнорировалась. Процесс шифрования сообщения с помощью компьютера почти не отличается от шифрования без компьютера, но есть три основных отличия. Во-первых, компьютер можно запрограммировать для имитации работы обычной шифровальной машины, например, с 1000 роторами, что избавляет от необходимости физически создавать такие устройства. Во-вторых, компьютер работает только с двоичными числами и, следовательно, все шифрование будет происходить на этом уровне (даже если числовая информация потом снова будет расшифрована в текст). И в-третьих, компьютеры очень быстро работают с вычислениями и расшифровывают сообщения.

Первый шифр, предназначенный для того, чтобы воспользоваться потенциалом компьютеров, был разработан в 1970-х гг. Например, «Люцифер», шифр, который разделял текст на блоки по 64 бита и зашифровывал некоторые из них с помощью сложной подстановки, а затем группировал их снова в новый блок зашифрованных битов и повторял процесс. Для работы такой системы было необходимо, чтобы отправитель и получатель имели компьютеры с одной и той же программой шифрования, а также общий цифровой ключ. 56-битная версия шифра «Люцифер», названная DES, была разработана в 1976 г. DES (Data Encryption Standard — «стандарт шифрования данных») по-прежнему используется в наши дни, хотя этот шифр был взломан в 1999 г. и заменен 128-битным AES (Advanced Encryption Standard) в 2002 г.

Без сомнения, такие алгоритмы шифрования сполна использовали вычислительную мощность компьютеров, но, как и их предшественники тысячелетней давности, компьютерные шифры по-прежнему были уязвимы, поскольку несанкционированный получатель мог перехватить ключ и, зная алгоритм шифрования, расшифровать сообщение. Этот основной недостаток каждой «классической» криптографической системы известен как проблема распределения ключей.


Проблема распределения ключей


Всем известно, что для обеспечения безопасности кода ключи шифрования должны быть защищены надежнее, чем алгоритм. Тогда возникает проблема: как безопасно распределять ключи. Даже в простых случаях это является серьезной проблемой логистики, например, как распределить тысячи шифровальных книг среди радистов большой армии, или как доставить книги в мобильные центры связи, работающие в экстремальных условиях, такие как станции на подводных лодках или штабы на линии фронта. Какой бы сложной ни была классическая система шифрования, она остается уязвимой, так как соответствующие ключи могут быть перехвачены.


Алгоритм Диффи — Хеллмана


Сама концепция безопасного обмена ключами может показаться противоречивой: как вы можете послать ключ в виде сообщения, которое уже как-то зашифровано?

Ключом, переданным заранее обычным способом? Однако, если ключами действительно несколько раз обменивались, то решение проблемы можно себе представить — по крайней мере, на теоретическом уровне.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука