Читаем Механика от античности до наших дней полностью

В 8-й главе X книги трактата рассматривается принцип действия механизмов, основанный на теории равновесия рычага, которую Витрувий излагает согласно «Механическим проблемам» и Герону, придерживаясь, таким образом, кинематического варианта статики.

Механике посвящена и последняя (VIII) книга «Математического собрания» Паппа Александрийского (III в. н. э.). Папп проводит в ней различие между механикой — теоретической наукой и механикой — практическим искусством. Сочинение Паппа представляет собой в основном компилятивный труд, в который включены разнородные сведения из различных источников. В книге приведено большое число отрывков из сочинений Архимеда, некоторые теоремы геометрической статики, относящиеся к определению положения центров тяжести различных фигур, главным образом трапеции и треугольника. Папп рассматривает приложение геометрической статики к конкретным техническим вопросам, например задачу об определении силы, необходимой для того, чтобы на наклонной плоскости сдвинуть груз, который на горизонтальной плоскости сдвигается данной силой. С другой стороны, в трактат включено описание устройства грузоподъемных машин из «Механики» Герона, однако без изложения принципа их действия.

В книге содержатся и собственные исследования автора, например теоремы об объемах тел вращения, которые он выражает через длину окружности, описываемой центром тяжести вращающейся фигуры (теорема Паппа — Гюльдена).

Сочинения Герона и Паппа показывают, что александрийские ученые I—IV вв. н. э. уделяли значительное внимание как теоретическим основам механики (хотя научный уровень их работ был значительно ниже, чем у Архимеда), так и практической механике, конструированию механизмов, оружия и автоматов.

Одним из основных стимулов разработки принципов кинематики и источников развития кинематических представлений в механике была греческая астрономия.

В вавилонской астрономии положения светил на небесной сфере вычислялись арифметическими методами.

Как мы уже упоминали, представители греческой классической философии (Платон, Аристотель) считали круговое движение, свойственное небесным телам, «совершенным». Поэтому греческие астрономы, обращаясь к кинематико-геометрическому моделированию видимых движений небесных тел, представляли эти сложные движения только в виде комбинации нескольких круговых. Первая попытка такого моделирования — теория вращающихся концентрических сфер, предложенная крупнейшим античным математиком и астрономом Евдоксом Книдским (IV в. до н. э.). Теория Евдокса состоит в следующем: вокруг центра, в котором находится покоящаяся Земля, вращаются 27 концентрических сфер. На внешней сфере расположены «неподвижные» звезды. С помощью остальных сфер Евдокс объясняет движение Солнца, Луны и пяти планет. Каждое из упомянутых небесных тел неразрывно связано с некоторой равномерно вращающейся сферой, объемлющей другую, ось которой находится под известным углом к оси первой. Внутренняя вращающаяся сфера увлекается в своем вращении внешней.

Движение Луны описывается с помощью трех сфер. Внешняя сфера Луны, на которой расположена эклиптика, служит для объяснения суточного движения Луны. Она, как и сфера «неподвижных» звезд, совершает один оборот в сутки вокруг полюсов экватора.

Вторая сфера, на которой расположена наклонная к эклиптике орбита Луны, участвуя в движении первой, вращается вокруг полюсов эклиптики, чем объясняется «отступание узлов» лунной орбиты. Третья сфера, на которой расположена Луна, вращается вокруг полюсов лунной орбиты, участвуя, таким образом, в движении обеих внешних сфер.

Движение планет Евдокс объясняет с помощью четырех сфер. Внешняя сфера, совершающая, как и в случае Луны, одно движение, совпадающее с суточным движением «неподвижных» звезд, служит для объяснения суточного движения планет. Вторая сфера, участвуя в движении первой, совершает оборот вокруг полюсов эклиптики за время, равное периоду обращения планеты. Вращения третьей и четвертой сфер служат для объяснения прямого и возвратного движений планет. Третье вращение, полюсами которого служат две неподвижные точки на эклиптике, совершается перпендикулярно ей. Плоскость четвертого вращения наклонена к плоскости третьего. В результате этих двух движений траектория планеты имеет вид петлеобразной кривой в форме лежащей восьмерки — гиппопеды, большая ось которой расположена на эклиптике.

Центр ее вследствие второго вращения проходит за период обращения планеты всю эклиптику.

С помощью системы Евдокса можно было более или менее удовлетворительно описать движение внешних планет (Юпитера и Сатурна).

Астроном Калипп пытался усовершенствовать эту систему, добавив еще по две сферы для Солнца и Луны и по одной для каждой из планет. Аристотель, добавив «(вращающиеся назад» сферы, при помощи движения которых он рассматривал вращение любой сферы независимо от объемлющей ее, увеличил их число до 56.

Перейти на страницу:

Все книги серии Из истории мировой культуры

Похожие книги

Адепт Бурдье на Кавказе: Эскизы к биографии в миросистемной перспективе
Адепт Бурдье на Кавказе: Эскизы к биографии в миросистемной перспективе

«Тысячелетие спустя после арабского географа X в. Аль-Масуци, обескураженно назвавшего Кавказ "Горой языков" эксперты самого различного профиля все еще пытаются сосчитать и понять экзотическое разнообразие региона. В отличие от них, Дерлугьян – сам уроженец региона, работающий ныне в Америке, – преодолевает экзотизацию и последовательно вписывает Кавказ в мировой контекст. Аналитически точно используя взятые у Бурдье довольно широкие категории социального капитала и субпролетариата, он показывает, как именно взрывался демографический коктейль местной оппозиционной интеллигенции и необразованной активной молодежи, оставшейся вне системы, как рушилась власть советского Левиафана».

Георгий Дерлугьян

Культурология / История / Политика / Философия