Читаем Механика от античности до наших дней полностью

В трактате приведена модификация способа Хайяма, где для определения веса золота в сплаве золота и серебра ал-Хазини прибегает к уравнению первой степени, которое решает с помощью «алгебры и алмукабалы». Следуя Хайяму, ал-Хазини также строит графическую схему для геометрической иллюстрации совершаемых им арифметических операций. Приведенные им числовые данные позволяют судить о точности производимых взвешиваний (около 0,1%). Ал-Хазини определял объемы, пользуясь отливным стаканчиком, изобретенным ал-Бируни. По весам и объемам ал-Хазини находил удельные веса различных веществ.

Интересно сопоставление его данных с современными: удельный вес серебра — 10,30 (современное — 10,49), золота—19,05 (19,27), свинца — 11,32 (11,39), ртути — 13,56 (13,557), меди — 8,66 (8,94), железа — 7,74 (7,87). Как видно, расхождения незначительные. Такая точность позволяла обнаружить различие удельного веса при разных температурах (для кипящей воды дается число 0,958, что совпадает с современными данными). Точное определение удельных весов позволяло решать ряд практических задач: отличать чистый металл от подделок, устанавливать ценность монет, выявлять подлинность драгоценных камней.

Кроме метрологической части «Книга о весах мудрости» содержит теоретический раздел, в котором рассматривается определение центров тяжести, потери веса телами при их погружении в воду, кажущегося веса тел в воздухе, равновесия плавающих тел, сферической формы жидкости, находящейся в равновесии, и др. С определением удельных весов мы встречаемся и в XV в. в «Ключе арифметики» самаркандского ученого Джем-шида ал-Коши{50}.

Развитие кинематических представлений в механике стран ислама остается тесно связанным с разработкой теории движения небесных тел. До нас дошло свыше 100 зиджей VIII—XV вв. Кинематические модели, описывающие движение светил, рассматриваются и в большом количестве специальных трактатов Сабита ибн-Корры, его внука Ибн-Синана, ал-Бируни и многих других.

В «Книге о замедлении и ускорении движения по зодиакальной орбите в соответствии с его расположением относительно эксцентрической орбиты» Ибн-Корра изучает видимое движение Солнца по эклиптике, исходя из античной эксцентрической гипотезы. Свои утверждения он формулирует в виде четырех предложений, два из которых чисто геометрические. С их помощью Ибн-Корра доказывает, что на дуге эклиптики, соответствующей дуге эксцентрической орбиты, расположенной ближе к апогею, движение Солнца медленнее, чем на дуге эклиптики, соответствующей дуге эксцентрической орбиты, расположенной ближе к перигею. А на таких двух дугах эклиптики, вместе взятых, если эти дуги равны, расположены симметрично относительно точек, отстоящих на 90° от апогея и перигея, и имеют общий конец в одной из этих точек, «истинное», т. е. видимое, движение равно среднему равномерному движению по соответствующей дуге эксцентрической орбиты. Свои рассуждения Ибн-Корра приводит для произвольных сколь угодно малых дуг эксцентрической орбиты.

Блестящим образцом кинематического исследования является описание движения Солнца в окрестности апогея и перигея в «Каноне Масуда» ал-Бируни. Рассматривая здесь движение точки по окружности, ал-Бируни подвергает его детальному математическому анализу. Если Ибн-Корра исходил из геометрических представлений, ал-Бируни сводит свое исследование к изучению поведения «уравнения Солнца», т. е. разности между дугами «истинного» и «среднего» движения, и разностей значений этого «уравнения» в концах дуг эксцентрической орбиты. Ал-Бируни показывает, что две указанные выше точки, в которых скорость видимого движения совпадает со скоростью равномерного движения по эксцентрической орбите, являются точками максимума «уравнения». Далее он показывает, что скорость видимого движения Солнца достигает в точках апогея и перигея максимума и минимума и что при перемещении от одного к другому наблюдается непрерывное возрастание и убывание скорости. Ал-Бируни связывает это с непрерывным возрастанием и убыванием «разностей уравнения», которые обращаются в нуль в точках максимума «уравнения».

В «Каноне Масуда» ал-Бируни пишет, что замедление движения Солнца по эклиптике в апогее переходит в его ускорение в перигее только после того, как оно проходит через равенство его и среднего движения в место наибольшего угла для уравнения. Изменение движения по обе стороны от этого места не ощущается, так как разность (уравнений) начинает уменьшаться от апогея до этого упомянутого места, потом как бы исчезает в нем, а затем увеличивается, пока Солнце не достигнет перигея.

Хотя ал-Бируни в своих трудах не выделил еще ни понятия ускорения, ни понятия скорости в общем виде, его исследование было существенным шагом в этом направлении. Эти идеи не получили, однако, дальнейшего развития на средневековом Востоке и возродились уже в Западной Европе три столетия спустя.


III.

МЕХАНИКА В СРЕДНЕВЕКОВОЙ ЕВРОПЕ

Перейти на страницу:

Все книги серии Из истории мировой культуры

Похожие книги

Адепт Бурдье на Кавказе: Эскизы к биографии в миросистемной перспективе
Адепт Бурдье на Кавказе: Эскизы к биографии в миросистемной перспективе

«Тысячелетие спустя после арабского географа X в. Аль-Масуци, обескураженно назвавшего Кавказ "Горой языков" эксперты самого различного профиля все еще пытаются сосчитать и понять экзотическое разнообразие региона. В отличие от них, Дерлугьян – сам уроженец региона, работающий ныне в Америке, – преодолевает экзотизацию и последовательно вписывает Кавказ в мировой контекст. Аналитически точно используя взятые у Бурдье довольно широкие категории социального капитала и субпролетариата, он показывает, как именно взрывался демографический коктейль местной оппозиционной интеллигенции и необразованной активной молодежи, оставшейся вне системы, как рушилась власть советского Левиафана».

Георгий Дерлугьян

Культурология / История / Политика / Философия