3.3.3. Основы линейного регрессионного анализа
Метод наименьших квадратов, рассмотренный в простейшем случае, допускает различные обобщения. Например, метод наименьших квадратов дает алгоритм расчетов, если исходные данные – по—прежнему набор
Следует рассмотреть функцию трех переменных
Оценки метода наименьших квадратов – это такие значения параметров
Приравнивая частную производную к 0, получаем линейное уравнение относительно трех неизвестных параметров
Приравнивая частную производную по параметру
Наконец, приравнивая частную производную по параметру
Решая систему трех уравнений с тремя неизвестными, находим оценки метода наименьших квадратов.
Другие задачи, рассмотренные в предыдущем пункте (доверительные границы для параметров и прогностической функции и др.), также могут быть решены. Соответствующие алгоритмы более громоздки. Для их записи полезен аппарат матричной алгебры. Для реальных расчетов используют соответствующие компьютерные программы.
Раздел эконометрики, посвященный восстановлению зависимостей, называется регрессионным анализом. Термин «линейный регрессионный анализ» используют, когда рассматриваемая функция линейно зависит от оцениваемых параметров (от независимых переменных зависимость может быть произвольной). Теория оценивания неизвестных параметров хорошо развита именно в случае линейного регрессионного анализа. Если же линейности нет и нельзя перейти к линейной задаче, то, как правило, хороших свойств от оценок ожидать не приходится.
Продемонстрируем подходы в случае зависимостей различного вида. Если зависимость имеет вид многочлена (полинома)
то коэффициенты многочлена могут быть найдены путем минимизации функции
Функция от
тогда неизвестные параметры могут быть найдены путем минимизации функции
Пусть
Эта модель не является линейной, метод наименьших квадратов непосредственно применять нельзя. Однако если прологарифмировать обе части предыдущего равенства:
то получим линейную зависимость, рассмотренную выше.
Независимых переменных может быть не одна, а несколько. Пусть, например, по исходным данным
требуется оценить неизвестные параметры
где ε – погрешность. Это можно сделать, минимизировав функцию
Зависимость от
тогда для оценки пяти параметров необходимо минимизировать функцию
Более подробно рассмотрим пример из микроэкономики. В одной из оптимизационных моделей поведения фирмы используется т. н. производственная функция
Однако откуда взять значения параметров α и β? Естественно предположить, что они – одни и те же для предприятий отрасли. Поэтому целесообразно собрать информацию
где
Следовательно, целесообразно сделать
а затем находить оценки параметров α и β, минимизируя функцию
Найдем частные производные:
Приравняем частные производные к 0, сократим на 2, раскроем скобки, перенесем свободные члены вправо. Получим систему двух линейных уравнений с двумя неизвестными:
Таким образом, для вычисления оценок метода наименьших квадратов необходимо найти пять сумм