Шкалы количественных признаков – это шкалы интервалов, отношений, разностей, абсолютная
. По шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой. В этих случаях на шкале нельзя отметить ни естественное начало отсчета, ни естественную единицу измерения. Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования, т. е. линейные функции. Температурные шкалы Цельсия и Фаренгейта связаны именно такой зависимостью: С 0 = 5/9 (Ф 0 – 32), где С 0 – температура по шкале Цельсия, а Ф 0 – температура по шкале Фаренгейта.Из количественных шкал наиболее распространенными в науке и практике являются шкалы отношений.
В них есть естественное начало отсчета – нуль, т. е. отсутствие величины, но нет естественной единицы измерения. По шкале отношений измерены большинство физических единиц: масса тела, длина, заряд, а также цены в экономике. Допустимыми преобразованиями шкале отношений являются подобные (изменяющие только масштаб). Другими словами, линейные возрастающие преобразования без свободного члена.Время измеряется по шкале разностей
, если год принимаем естественной единицей измерения, и по шкале интервалов в общем случае. Естественного начала отсчета указать на современном уровне знаний нельзя. Только для абсолютной шкалы результаты измерений – числа в обычном смысле слова. Примером является число людей в комнате. Для абсолютной шкалы допустимым является только тождественное преобразование.В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой
шкале (холоднее – теплее). Затем – по интервальной (шкалы Цельсия, Фаренгейта, Реомюра). Наконец, после открытия абсолютного нуля температуру следует считать измеренной по шкале отношений (шкала Кельвина). Надо отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины. Другими словами, процесс измерения включает в себя и определение типа шкалы (вместе с обоснованием).Инвариантные алгоритмы и средние величины.
Основное требование к алгоритмам анализа данных формулируется в РТИ так: выводы, сделанные на основе данных, измеренных в шкале определенного типа, не должны меняться при допустимом преобразовании шкалы измерения этих данных . Другими словами, выводы должны быть инвариантны по отношению к допустимым преобразованиям шкалы.Таким образом, одна из основных целей теории измерений – борьба с субъективизмом исследователя при приписывании численных значений реальным объектам. Так, расстояния можно измерять в аршинах, метрах, микронах, милях, парсеках и других единицах измерения. Массу (вес) – в пудах, килограммах, фунтах и др. Цены на товары и услуги можно указывать в юанях, рублях, тенге, гривнах, латах, кронах, марках, долларах США и других валютах (при условии заданных курсов пересчета). Подчеркнем очень важное, хотя и вполне очевидное обстоятельство: выбор единиц измерения зависит от исследователя, т. е. субъективен. Статистические выводы могут быть адекватны реальности только тогда, когда они не зависят от того, какую единицу измерения предпочтет исследователь, т. е. когда они инвариантны относительно допустимого преобразования шкалы.
В качестве примера рассмотрим обработку мнений экспертов, измеренных в порядковой шкале. Пусть Y1, Y2,…,Yn
– совокупность оценок экспертов, «выставленных» одному объекту экспертизы (например, одному из вариантов стратегического развития фирмы), Z1, Z2,…,Zn – второму (другому варианту такого развития).Как сравнивать эти совокупности? Очевидно, самый простой способ – по средним значениям. А как вычислять средние? Известны различные виды средних величин: среднее арифметическое, медиана, мода, среднее геометрическое, среднее гармоническое, среднее квадратическое. Обобщением нескольких из перечисленных является среднее по Колмогорову. Для чисел X1, X2,…,Xn
среднее по Колмогорову вычисляется по формулеG{(F(X1)+F(X2)+…F(Xn))/n},