Читаем Менеджмент: конспект лекций полностью

где F – строго монотонная функция, G – функция, обратная к F . Среди средних по Колмогорову – много хорошо известных персонажей. Так, если F(x) = x , то среднее по Колмогорову – это среднее арифметическое, если F(x) = ln x , то среднее геометрическое, если F(x) = 1/x , то среднее гармоническое, если

F(x) = x 2 , то среднее квадратическое, и т. д. С другой стороны, такие популярные средние, как медиана и мода, нельзя представить в виде средних по Колмогорову.

Напомним, что общее понятие средней величины введено французским математиком первой половины ХIХ в. академиком О. Коши. Оно таково: средней величиной является любая функция f(X1, X2,…Xn) такая, что при всех возможных значениях аргументов значение этой функции не меньше, чем минимальное из чисел X1, X2,…Xn , и не больше, чем максимальное из этих чисел. Среднее по Колмогорову – частный случай среднего по Коши. Медиана и мода, хотя и не являются средними по Колмогорову, но тоже – средние по Коши.

При допустимом преобразовании шкалы значение средней величины, очевидно, меняется. Но выводы о том, для какой совокупности среднее больше, а для какой – меньше, не должны меняться (в соответствии с требованием инвариантности выводов, принятом как основное требование в РТИ). Сформулируем соответствующую математическую задачу поиска вида средних величин, результат сравнения которых устойчив относительно допустимых преобразований шкалы.

Пусть f(X1, X2,…,Xn)

 – среднее по Коши. Пусть среднее по первой совокупности меньше среднего по второй совокупности:

f(Y1, Y2,…,Yn) < f(Z1, Z2,…,Zn). (1)

Согласно РТИ для устойчивости результата сравнения средних необходимо, чтобы для любого допустимого преобразования g из группы допустимых преобразований в соответствующей шкале было справедливо также неравенство

f(g(Y1), g(Y2),…, g(Yn)) < f (g(Z1), g(Z2),…, g(Zn)), (2)

т. е. среднее преобразованных значений из первой совокупности также было меньше среднего преобразованных значений для второй совокупности. Причем сформулированное условие должно быть верно для любых двух совокупностей Y1, Y2,…,Yn и Z1, Z2,…,Zn и, напомним, любого допустимого преобразования g . Согласно РТИ только такими средними можно пользоваться при анализе мнений экспертов и иных данных, измеренных в рассматриваемой шкале.

С помощью математической теории, развитой А.И.Орловым в 1970–х годах, удается описать вид допустимых средних в основных шкалах. В шкале наименований в качестве среднего годится только мода. Из всех средних по Коши в порядковой шкале в качестве средних можно использовать только члены вариационного ряда (порядковые статистики), в частности, медиану (при нечетном объеме выборки. При четном же объеме следует применять один из двух центральных членов вариационного ряда – как их иногда называют, левую медиану или правую медиану), но не среднее арифметическое, среднее геометрическое и т. д. В шкале интервалов из всех средних по Колмогорову можно применять только среднее арифметическое. В шкале отношений из всех средних по Колмогорову устойчивыми относительно сравнения являются только степенные средние и среднее геометрическое.

Приведем численный пример, показывающий некорректность использования среднего арифметического f(X1, X2) = (X1+X2)/2 в порядковой шкале. Пусть Y1= 1, Y2 = 11, Z1 = 6, Z2 = 8. Тогда f(Y1, Y2) = 6 , что меньше, чем f(Z1, Z2) = 7 . Пусть строго возрастающее преобразование g таково, что g(1) = 1, g(6) = 6, g(8) = 8, g(11) = 99.

Таких преобразований много. Например, можно положить g (x) = x при x , не превосходящих 8, и g (x) = 99(x –8)/3 + 8 для х , больших 8. Тогда f(g(Y1), g(Y2)) = 50 , что больше, чем f(g(Z1), g(Z2)) = 7 . Как видим, в результате допустимого, т. е. строго возрастающего преобразования шкалы упорядоченность средних изменилась.

Приведенные результаты о средних величинах широко применяются, причем не только в теории экспертных оценок или социологии, но и, например, для анализа методов агрегирования датчиков в АСУ ТП доменных печей. Велико прикладное значение РТИ в задачах стандартизации и управления качеством, в частности, в квалиметрии. Здесь есть и интересные теоретические результаты. Так, например, любое изменение коэффициентов весомости единичных показателей качества продукции приводит к изменению упорядочения изделий по средневзвешенному показателю (эта теорема доказана проф. В.В. Подиновским).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже