При отсутствии согласованности экспертов естественно разбить их на группы сходных по мнению. Это можно сделать различными методами статистики объектов нечисловой природы, относящимися к кластер—анализу, предварительно введя метрику в пространство мнений экспертов. Идея американского математика Джона Кемени об аксиоматическом введении метрик (см. ниже) нашла многочисленных продолжателей. Однако методы кластер—анализа обычно являются эвристическими. В частности, невозможно с позиций статистической теории обосновать «законность» объединения двух кластеров в один. Имеется важное исключение –
Нахождение итогового мнения комиссии экспертов.
Пусть мнения комиссии экспертов или какой—то ее части признаны согласованными. Каково же итоговое (среднее, общее) мнение комиссии? Согласно идее Джона Кемени следует найти среднее мнение как решениеМатематическая сложность состоит в том, что мнения экспертов лежат в некотором пространстве объектов нечисловой природы. Общая теория подобного усреднения построена в ряде работ, в частности, показано, что в силу обобщения закона больших чисел среднее мнение при увеличении числа экспертов (чьи мнения независимы и одинаково распределены) приближается к некоторому пределу, который естественно назвать
В конкретных пространствах нечисловых мнений экспертов вычисление медианы Кемени может быть достаточно сложным делом. Кроме свойств пространства, велика роль конкретных метрик. Так, в пространстве ранжировок при использовании метрики, связанной с коэффициентом ранговой корреляции Кендалла, необходимо проводить достаточно сложные расчеты, в то время как применение показателя различия на основе коэффициента ранговой корреляции Спирмена приводит к упорядочению по средним рангам.
Бинарные отношения и расстояние Кемени.
Как известно, бинарное отношениеКак использовать связь между ранжировками и матрицами? Например, из определения противоречивости пары
В экспертных методах используют, в частности, такие бинарные отношения, как ранжировки (упорядочения, или разбиения на группы, между которыми имеется строгий порядок), отношения эквивалентности, толерантности (отношения сходства). Как следует из сказанного выше, каждое бинарное отношение