где переменные x
j лежат в некотором пространстве Х , возможно, достаточно сложной природы. Надо отметить также, что положение в следующий момент не может быть произвольным, оно связано с положением в предыдущий момент. Проще всего принять, что существует некоторое множество К такое, что
Результат экономической деятельности за j
– й период описывается величиной
Зависимость не только от начального и конечного положения, но и от номера периода объясняется тем, что через номер периода осуществляется связь с общей экономической ситуацией. Желая максимизировать суммарные результаты экономической деятельности, приходим к постановке стандартной задаче динамического программирования:
Таким образом, необходимо выбрать план
удовлетворяющий приведенным ограничениям, на котором достигает максимума функционал F
m . Естественно, предполагается, что множество возможных переходов К таково, что область определения функционала F m не пуста. При обычных математических предположениях максимум достигается.Как известно, задача (1) часто возникает во многих прикладных экономических и эконометрических областях, в макроэкономике (подробнее см. Шевчук Д.А., Шевчук В.А. Макроэкономика: Конспект лекций. – М.: Высшее образование, 2006), в логистике (управлении запасами).
Широко предлагаются, исследуются и применяются модели, приводящие к следующему частному случаю задачи (1):
Это – модели с дисконтированием (как известно, α – дисконт—фактор). Естественно попытаться выяснить, какими «внутренними» свойствами выделяются задачи типа (2) из всех задач типа (1). В частности, почему такой большой популярностью пользуется характеристика инвестиционного проекта NPV (Net Present Value – чистая текущая стоимость), относящаяся к характеристикам дисконтированного типа и подробно рассматриваемая ниже (глава 2.3).