Читаем Менеджмент: конспект лекций полностью

Современные методы принятия решений. Кроме упомянутых или кратко рассмотренных выше методов, прежде всего экспертных, при принятии решений применяют весь арсенал методов современной прикладной математики. Они используются для оценки ситуации и прогнозирования при выборе целей, для генерирования множества возможных вариантов решений и выбора из них наилучшего.

Прежде всего надо назвать всевозможные методы оптимизации (математического программирования). Для борьбы с многокритериальностью используют различные методы свертки критериев, а также интерактивные компьютерные системы, позволяющие вырабатывать решение в процессе диалога человека и ЭВМ. Применяют имитационное моделирование, базирующееся на компьютерных системах, отвечающих на вопрос: «Что будет, если…?», метод статистических испытаний (Монте—Карло), модели надежности и массового обслуживания. Часто необходимы статистические (эконометрические) методы, в частности, методы выборочных обследований. При принятии решений применяют как вероятностно—статистические модели, так и методы анализа данных.

Особого внимания заслуживают проблемы неопределенности и риска, связанных как с природой, так и с поведением людей. Разработаны различные способы описания неопределенностей: вероятностные модели, теория нечеткости, интервальная математика. Для описания конфликтов (конкуренции) полезна теория игр. Для структуризации рисков используют деревья причин и последствий (диаграммы типа «рыбий скелет», они же – диаграммы Исикава или Ишикава, по фамилии японского исследователя, впервые их использовавшего). Менеджеру важно учитывать постоянные и аварийные экологические риски. Плата за риск и различные формы страхования также постоянно должны быть в его поле зрения.

Проблема горизонта планирования. Во многих ситуациях продолжительность проекта не определена либо горизонт планирования инвестора не охватывает всю продолжительность реализации проекта до этапа утилизации. В таких случаях необходимо изучить влияние горизонта планирования на принимаемые решения. Это особенно важно для стратегического менеджмента (глава 1.4)

Контроллинг. Как уже отмечалось, в последние годы все большую популярность получает контроллинг – современная концепция системного управления организацией, в основе которой лежит стремление обеспечить ее долгосрочное эффективное существование. Контроллинг – это информационно—аналитическая поддержка принятия решений на предприятии (в организации). Контроллинг рассматривается в главе 3.6.

В конкретных прикладных работах успех достигается при комбинированном применении различных методов. Для подготовки решений создаются аналитические центры и «ситуационные комнаты», позволяющие соединять человеческую интуицию и компьютерные расчеты. Все шире используются информационные технологии поддержки принятия решений, прежде всего в контроллинге.

3.2. МЕТОДЫ ОПТИМИЗАЦИИ

Оптимизация налогов подробно рассмотрена в работе Шевчук Д.А. Оффшоры: инструменты налоговой оптимизации. – М.: ГроссМедиа: РОСБУХ, 2007. В настоящее время менеджер может использовать при принятии решения различные компьютерные и математические средства. В памяти компьютеров держат массу информации, организованную с помощью баз данных и других программных продуктов, позволяющих оперативно ею пользоваться. Экономико—математические и эконометрические модели позволяют просчитывать последствия тех или иных решений, прогнозировать развитие событий. Методы экспертных оценок, о которых пойдет речь ниже, также весьма математизированы и используют компьютеры.

Наиболее часто используются оптимизационные модели принятия решений. Их общий вид таков:

F ( X ) → max

X Є A

Здесь Х

– параметр, который менеджер может выбирать (управляющий параметр). Он может иметь различную природу – число, вектор, множество и т. п. Цель менеджера – максимизировать целевую функцию F ( X ), выбрав соответствующий Х .. При этом он должен учитывать ограничения X Є A на возможные значения управляющего параметра Х – он должен лежать в множестве
А. Ряд примеров оптимизационных задач менеджмента приведен ниже.

3.2.1. Линейное программирование

Среди оптимизационных задач менеджмента наиболее известны задачи линейного программирования, в которых максимизируемая функция F ( X ) является линейной, а ограничения А задаются линейными неравенствами. Начнем с примера.

Производственная задача. Цех может производить стулья и столы. На производство стула идет 5 единиц материала, на производство стола – 20 единиц (футов красного дерева). Стул требует 10 человеко—часов, стол – 15. Имеется 400 единиц материала и 450 человеко—часов. Прибыль при производстве стула – 45 долларов США, при производстве стола – 80 долларов США. Сколько надо сделать стульев и столов, чтобы получить максимальную прибыль?

Обозначим: Х

1 – число изготовленных стульев, Х 2 – число сделанных столов. Задача оптимизации имеет вид:

45 Х 1 + 80 Х 2 → max,

5 Х 1 + 20 Х 2 ≤ 400,

10 Х 1 + 15 Х 2 ≤ 450,

Х 1 ≥ 0,

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже