Следовательно, область допустимых значений параметров (
0,10
1,00
Из второго уравнения
Прямая (3) – это прямая, соответствующая целевой функции 3,8
Двойственная задача, построенная по описанным выше правилам, имеет приведенный ниже вид (мы повторяем здесь и исходную задачу об оптимизации смеси, чтобы наглядно продемонстрировать технологию построения двойственной задачи):
3,8
0,10
1,00
110,00
Минимальное значение в прямой задаче, как и должно быть, равно максимальному значению в двойственной задаче, т. е. оба числа равны 236/9. Интерпретация двойственных переменных:
Планирование номенклатуры и объемов выпуска.
Вернемся к организации производства. Предприятие может выпускать автоматические кухни (вид кастрюль), кофеварки и самовары. В табл.2 приведены данные о производственных мощностях, имеющихся на предприятии (в штуках изделий).При этом штамповка и отделка проводятся на одном и том же оборудовании. Оно позволяет штамповать за заданное время или 20000 кухонь, либо 30000 кофеварок, либо и то, и другое, не в меньшем количестве. А вот сборка проводится на отдельных участках.
Задача линейного программирования имеет вид:
Х 2 / 120 ≤ 100, (4)
Здесь:
(0) – обычное в экономике условие неотрицательности переменных,
(1) – ограничение по возможностям штамповки (выраженное для облегчения восприятия в процентах),
(2) – ограничение по возможностям отделки,
(3) – ограничение по сборке для кухонь,
(4) – то же для кофемолок,
(5) – то же для самоваров (как уже говорилось, все три вида изделий собираются на отдельных линиях).
Наконец, целевая функция
Заметим, что неравенство (3) вытекает из неравенства (1), а неравенство (4) – из (2). Поэтому неравенства (3) и (4) можно из формулировки задачи линейного программирования исключить.
Отметим сразу любопытный факт. Как будет установлено, в оптимальном плане
Методы решения задач линейного программирования.
Методы решения задач линейного программирования относятся к вычислительной математике, а не к экономике и менеджменту. Однако инженеру, менеджеру и экономисту полезно знать о свойствах интеллектуального инструмента, которым он пользуется.С ростом мощности компьютеров необходимость применения изощренных математических методов снижается, поскольку во многих случаях время счета перестает быть лимитирующим фактором, оно весьма мало (доли секунд). Поэтому разберем лишь три метода.