Читаем Многоликий солитон полностью

Но вернемся к задаче, поставленной Ферми перед ЭВМ. Вместе с математиками Станиславом Уламом и Джоном Пастой он в 1952 г. задумал выполнить обширные машинные эксперименты по исследованию нелинейных задач. Первой из них и была задача о порождении теплового хаоса в цепочке грузиков с нелинейными пружинками. Как вспоминал С. Улам: «Ферми часто говорил, что будущие фундаментальные физические теории будут, вероятно, основаны на нелинейных уравнениях, и поэтому было бы полезно попрактиковаться в математике, необходимой для понимания нелинейных систем. План состоял в том, чтобы начать с простейшей, по возможности, физической модели... затем постепенно увеличивать сложность и общность решаемых на машине задач... Решение всех этих задач послужило бы подготовкой к установлению, в конце концов, модели движений системы, в которой должны были бы наблюдаться «перемешивание» и «турбулентность»... За одно лето Ферми весьма быстро научился программировать задачи для ЭВМ и мог не только спланировать общую схему расчета, но и самостоятельно провести подробное программирование всей задачи. Результаты вычислений, проведенных на старой машине МАНИАК, оказались интересными и весьма неожиданными для Ферми. По его мнению, они явились некоторым откровением». Машина сумела настолько удивить Ферми, что он, уже будучи смертельно больным, интересовался продолжением расчетов и говорил, что эта одна из самых важных задач, с которыми он когда-либо встречался. Что же так поразило Ферми?

Ферми, Паста и Улам предложили машине рассчитать колебания системы из 32 грузиков, связанных пружинками, которые при растяжении их на Δl создают возвращающую силу kΔl + αl)2. При этом нелинейная поправка αl)2 считалась малой по сравнению с основной, линейной силой

kΔl. Таким образом, машина должна была решать систему из 32 уравнений, подобных уравнениям (4.8), но с добавленными в правой части нелинейными силами α [(xi+1 - xi)2 - (xi - xi-1)2]. Так как эти добавки малы, то можно следить не за движением отдельных частиц, а за изменением синусоидальных мод линейных уравнений, получающихся при α = 0. При α  0 моды перестают быть независимыми, и энергия медленно (по сравнению с их периодами) перекачивается из одной моды в другую.



Рассмотрим движение из начального состояния, в котором возбуждена одна 1-я мода (обозначим ее период буквой Т). Сначала действительно начинается перекачивание энергии в другие моды. Однако никакой хаотичности в этом не наблюдается (см. рис. 7.2). При t 20 Т возбуждена в основном 3-я мода. Затем начинает «солировать» 2-я мода (при t 28 Т). При 44 Т энергия оказывается сосредоточена в 3-й моде, и при t

56 Т снова возвращается к 1-й. Более высокие моды возбуждаются мало, максимальная энергия 4-й моды меньше половины энергии первой (т. е. полной энергии), а 5-я мода может получить не более шестой части полной энергии. На рис. 7.2 изображены вычисленные отклонения грузиков в различные моменты времени (масштаб по оси y для удобства сильно увеличен).

Может быть, это случайность? Нет, при увеличении числа грузиков, при изменении α, при изменении самой формы нелинейной силы (скажем, β(Δl)3 вместо αl)2) это явление сохраняется. Моды не сливаются в общий беспорядочный хор, а выделяют несколько солистов, которые выступают по очереди, остальные им аккомпанируют. Когда возвращается первый солист, все начинается сначала! Время возвращения Тв (в нашем случае Т

в 56 Т) зависит от числа N, от вида нелинейности, но солирование низших мод и возвращение при Т = Тв наблюдалось всегда.

Полученный результат можно наглядно изобразить простой музыкальной пьесой (см. рис. 7.3).



Здесь «записаны» моды, которые последовательно звучат на струне, соответствующей нашей системе грузиков. Каждой моде соответствует нота: 1-й — нижнее «до», 2-й — «до» октавой выше и т. д. *). Изображенные нотами моды звучат в отдельные моменты, только громкость мы изобразили длительностью звучания ноты. В два раза более громкая нота звучит у нас в два раза дольше и т. д. На рис. 7.3 представлена только половина «пьесы», далее происходит возвращение к начальному «до» в обратном порядке.

*) Нижнее «до» большой октавы имеет частоту примерно 64 Гц. Будем просто считать, что параметры нелинейной системы грузиков подобраны так, что частота 1-й моды равна 64 Гц.

Перейти на страницу:

Все книги серии Библиотечка Квант

Похожие книги