Вместе с тем явилась возможность производить испытания судов и определять мощность, потребную на их движение, что на парусных судах было совершенно невозможно. Испытание каждого корабля доставляло материал для суждения о следующем, явился ряд эмпирических формул, воспроизводящих результаты таких опытов. Из множества таких формул следует отметить данную в 1892 г. формулу В. И. Афанасьева, замечательную по своей простоте и хорошей точности для громадного числа случаев обычной практики.
В сороковых же годах шотландский битюг сделал по отношению к движению судов по каналам то открытие, которое ускользнуло от внимания французских академиков. Его впрягали в бичеву, которой по каналу тянули трешкоут, и заметили, что он проходил свою станцию ровной рысью быстрее других и приходил совершенно свежий, тогда как другие лошади тот же путь пробегали значительно медленнее, а приходили в мыле. Об этом узнал знаменитый корабельный инженер Скот Россель и обратил внимание, что битюг вначале наддавал ходу, затем ход несколько сбавлял, и трешкоут шел с едва натянутой бечевой, — одним словом, было открыто явление так называемой переносной волны, получившее впоследствии столь важное значение.
7. В 1870 г. В. Фруд предложил воспользоваться для суждения о сопротивлении воды на корабль испытанием его модели, применяя Ньютонов закон механического подобия. Английское адмиралтейство поддержало начинание Фруда, в Торкей был построен специальный бассейн, послуживший затем образцом как для нашего, так и для других бассейнов. По закону Ньютона модель надо испытывать при скорости, составляющей от скорости корабля такую же долю, как корень квадратный из масштаба модели составляет от 1. Так, например, если модель в 1
/25 натуры, то ее надо испытывать при скорости в 1/5 от скорости корабля, тогда сопротивление, ею претерпеваемое, составит такую долю от сопротивления корабля при его скорости, какую куб масштаба модели составляет от 1; в нашем примере это будет (1/25)3 = 1/15625. Зная же сопротивление и скорость, сейчас же получим и потребную мощность.Однако на практике дело оказалось далеко не столь простым. Закон механического подобия, данный Ньютоном, столь же точен и неоспорим, как и всякий закон теоретической механики, но корабль и его модель при движении в воде не представляют собою двух подобных в механическом смысле систем, т. е. в смысле Ньютонова закона. Сопротивление воды состоит из двух частей: одной — зависящей от размеров и обводов корабля или его модели, другой — зависящей только от величины его смоченной поверхности и от длины ее. Эта вторая часть его как раз обнаруженное еще при опытах Бофуа трение, оно-то и не следует закону подобия. Фруд подробно изучил законы трения в воде и указал, как надо производить расчет в отдельности для каждой из составных частей сопротивления, чтобы от результатов испытания модели перейти к кораблю.
8. В тесной связи с сопротивлением воды находятся расчет и теория гребного винта. Хотя в последние годы в этой области сделано весьма многое покойным Н. Е. Жуковским и его учениками, начиная с академика С. А. Чаплыгина, но вопрос еще не получил окончательного разрешения. Все расчеты основаны на разного рода допущениях, более или менее соответствующих действительности.
Здесь во всяком случае надо иметь в виду воззрения Ранкина на все движители как на реактивные: движитель отбрасывает воду назад и сообщает кораблю такое же количество движения вперед, какое сообщено воде назад. Значит, работа, или мощность затрачиваемая на вращение винта, частично идет на сообщение движения кораблю, преодолевая сопротивление воды, частично же идет на сообщение скорости отбрасываемой назад воде. Эта последняя часть составляет чистую потерю. Эта потеря будет тем меньше, чем больше отбрасываемое количество воды и чем меньше скорость, с которою это количество воды отброшено. Отсюда видно, что надо получить струю, отбрасываемую винтом или вообще движителем, возможно большей площади поперечного сечения. Всякое нарушение этого принципа приводит к невыгодным движителям, обладающим большими потерями и малым полезным действием.
Таким образом, водометные движители, где струя сравнительно малой площади сечения отбрасывалась с большою скоростью, оказались весьма невыгодными. Наперед можно было предвидеть невыгоду устройства на одном из наших больших крейсеров, построенном лет сорок тому назад, среднего винта малых размеров для экономического хода; такой винт по самому принципу его работы не мог быть экономичным, что и подтвердилось на практике.