Читаем Начала современного естествознания: концепции и принципы полностью

Следующий шаг проведения в жизнь программы «геометризации» физики — в так называемой «общей теории относительности», был в этом плане совершенно последовательным: привлечь для характеристики гравитационных состояний физических объектов другие новые пространства. Ими оказались римановы, произвольно «искривленные», в окрестности каждой точки, локальные пространства. Здесь Эйнштейн уже во всей полноте использовал идею великих математиков XIX в. (Клиффорда в первую очередь, и Римана) о том, что наиболее общим типом изменения абстрактных математических структур физической теории является не только вариация траекторий движения материальных точек, но также и изменение метрических свойств объемлющего их пространства.

Экспериментальное подтверждение общей теории относительности вызвало к жизни в 20-е гг. прошлого века еще более фантастические надежды — «свести» и электромагнитные взаимодействия к изменениям метрики объемлющего физические объекты пространства (попытка немецкого физика Теодора Калуцы, а затем немецкого математика Феликса Клейна и др.).

Однако надежды не оправдались: природа оказалась «устроенной» гораздо более богато и разносторонне, чем это предполагали даже величайшие умы человечества. Ни самому А. Эйнштейну, ни таким его маститым последователям, как Э. Шредингер, В. Паули, Г… Веблен, Т. Калуца, П. Бергман и другим, не удалось свести только к изменениям пространственной метрики ни электромагнетизм, ни тем более открытые позднее сильные (ядерные) — мезонные и слабые (распадные) — лептонные взаимодействия.

Нам представляется, что шаги, сделанные Эйнштейном в направлении геометризации физической науки, необратимы. Мы должны тщательно проанализировать причины неудач А. Эйнштейна и идти дальше и глубже. Ведь математизация физики XX в. значительна прежде всего тем, что в ней базовые математические структуры геометрии, алгебры и анализа стали существенными компонентами самих основных физических понятий.

Ошибка, точнее личная неудача, Эйнштейна кроется не здесь: она содержится, по мнению большинства современных исследователей, в ограничении себя рассмотрением изменения только метрических структур геометрии. Изменения пространственной метрики хорошо описывают изменения гравитационных состояний физических объектов, но ниоткуда не следует, что та же самая метрика должна нести ответственность за такие качественно весьма и весьма отличные от тяготения физические явления, как электромагнетизм или, тем более новые, взаимодействия физики элементарных частиц.

Математика квантовой теории как концептуальная база современного естествознания. Квантовая теория только потому и оказалась концептуальной базой теоретического синтеза естественнонаучных дисциплин, что такие ее понятия, как состояние, наблюдаемое, оператор и другие, «вобрали» в себя в особо «плотном» виде все наиболее существенные черты и характеристики самых различных объектов исследования физики, химии, а теперь и биологии.

Оказалось возможным, с единой точки зрения, не просто качественно описать, но и количественно, предсказательно, прогнозно, хотя и с вероятностной точностью, рассчитать процессы благодаря введению в физическую теорию принципиально новых математических структур бесконечномерного гильбертова пространства. С позиций методологии, квантовая теория для нас ныне — это не больше чем реализация эйнштейновской программы «геометризации» физики, но только не с помощью произвольно искривленных конечномерных римановых пространств, а уже с использованием не менее абстрактных и необычно «устроенных» математических объектов — бесконечномерных гильбертовых пространств.

Что же касается проблемы единства естественнонаучного знания, то действительно, огромные достижения квантовой механики в установлении концептуального синтеза теоретической физики и теоретической химии уже в 30-е годы породили очень большие иллюзии относительно простоты и легкости построения наиболее общей и единой естественнонаучной теории нашего времени. Ученые полагали, что достаточно будет более или менее точно согласовать друг с другом теорию относительности и квантовую механику — либо в форме релятивистки инвариантной записи основных квантовых уравнений, либо путем построения особой релятивисткой квантовой теории поля — и последняя автоматически окажется также и общей теорией элементарных частиц и, тем самым, столь же автоматически, осуществит наиболее глубокий синтез всех существующих физических теорий, а на их основе и всего естественнонаучного знания.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже