Разные виды вещества реагируют на гравитационное сжатие по-разному. Представим, что внутреннее ядро – шарик. Он может быть либо плотным, твердым, как бейсбольный мяч, который трудно сжать, либо мягким, податливым, как надувной. Эти два мяча ведут себя по-разному, поскольку сделаны из разного материала. Из двух нейтронных звезд одинаковой массы в большей из них, имеющей больший радиус, будет более плотное ядро: поскольку сама звезда больше, гравитация будет сжимать вещество сильнее, поэтому ядро должно суметь противостоять большему давлению, иначе звезда сколлапсирует в черную дыру. Ядро, похожее на бейсбольный мяч, может выстоять. А вот если у звезды с той же массой ядро менее плотное или “мягкое” и легко сжимается под действием гравитации, она должна быть меньшего размера, чтобы суметь противодействовать гравитационному сжатию.
Некоторые ученые думают, что нейтронные звезды с твердым ядром (которое описывается “жестким” уравнением состояния), скорее всего, содержат недеформированные нейтроны, только очень плотно упакованные. Звезды меньших размеров с более рыхлым ядром (описываемые “мягким” уравнением состояния) могут содержать свободные кварки в различных конфигурациях, не в последнюю очередь из-за того, что процессы образования гиперонов и каонов из свободных кварков в разных конфигурациях также ведут к понижению давления. Но этот вопрос в большой степени является дискуссионным.
Чтобы узнать, из чего состоит ядро, ученые должны рассчитать, насколько массивной может быть нейтронная звезда данного радиуса. Прежде всего нужно измерить радиус и массу нейтронной звезды по результатам наблюдений, затем, исходя из этих значений, получить уравнение состояния и в процессе расчетов отбросить модели, неправильно описывающие материю, из которой может состоять ядро.
Самые сильные ограничения на модель определяются измерением больших масс – и чем больше масса звезды, тем лучше. Для каждого уравнения состояния есть максимальная масса, допускаемая теорией, и она должна соответствовать наблюдениям. Самая тяжелая нейтронная звезда, известная к настоящему моменту, – это PSR J0740 + 6620, и она имеет массу, равную 2,14 солнечной[21]
. Она была обнаружена в 2012 году с помощью телескопаКогда LIGO и
Для ученых все эти вещи на сегодняшний день представляют собой довольно сложный пазл, который пока не удается сложить, ведь ни одна из существующих моделей не говорит нам уверенно о том, что находится в центре нейтронной звезды. Для получения новых, более точных значений масс и радиусов звезд ученые продолжают накапливать данные измерений, проводимых с помощью телескопов, ускорителей частиц, детекторов гравитационных волн и даже специального прибора, установленного на борту Международной космической станции. С каждой новой серией данных они получают еще один кусочек пазла, заполняя брешь в наших знаниях.
Иногда к научному открытию приводит цепь совершенно случайных совпадений, например, когда ваша фамилия начинается с той же буквы, что и фамилия нобелевского лауреата – и поэтому университетский почтовый ящик у вас оказывается общим. Сегодня, в наш век электронной почты, трудно представить, что раньше в таких местах, как Институт Нильса Бора при Копенгагенском университете, существовали почтовые ящики, подписанные буквами от