Читаем Необъятный мир: Как животные ощущают скрытую от нас реальность полностью

Желеобразная субстанция в ампулах Лоренцини – превосходный проводник (Josberger et al., 2016). Она выполняет роль кабеля, передающего электрическое поле из окружающей воды к расширенной части ампулы, где его улавливает слой сенсорных клеток. Они сопоставляют характеристики этого поля с характеристиками организма самого животного и доносят эти сведения до мозга. Объединяя сигналы от таких клеток из тысяч ампул, акула получает представление об электрическом поле вокруг нее.

233


Иногда утверждается, что акулы и скаты улавливают электрическое поле, генерируемое работающими мышцами. Но хотя движения мышц действительно порождают электрическое поле, обычно его интенсивность оказывается ниже порога восприятия электрорецепторов.

234


Впрочем, не всегда. Некоторые скаты-хвостоколы с помощью электрического поля находят зарывшихся брачных партнеров (Tricas, Michael, and Sisneros, 1995). А некоторые зародыши акул замирают, почувствовав электрическое поле проплывающего мимо хищника (Kempster, Hart, and Collin, 2013), – эта уловка напоминает мне поведение головастиков красноглазой квакши, которое изучала Карен Варкентин.

235


Строго говоря, достаточно сильное электрическое поле ощущает даже человек. У нас нет для этого специализированных органов чувств, однако сильный ток заметно стимулирует наши нервы, вызывая покалывание, боль и судорожные сокращения мышц. Но если наша чувствительность ограничивается напряженностью от 0,1 до 1 В/см, то у акул она примерно в миллиард раз выше и при этом не является пыткой для организма.

236


Часто утверждается, что для создания настолько слабого поля с помощью обычной батарейки АА нужно подсоединить ее концы к электродам, погруженным в воду на противоположных берегах Атлантики. Метафора, конечно, яркая, однако она задает неверные пространственные ориентиры. В действительности акул интересуют поля с гораздо меньшей напряженностью, чем от батарейки, а поскольку эти электрические поля слабеют по мере удаления от источника, электрическое чувство у акул действует только на близком расстоянии.

237


Именно поэтому электрические поля вызывают рефлекторное моргание, которое наблюдали Дейкграф и Кальмейн: акулы защищают глаза в преддверии атаки на добычу (Dijkgraaf and Kalmijn, 1962).

238


Однако оно может это поле ослабить. Завидев надвигающуюся тень акулы, каракатица замирает, задерживает дыхание и закрывает жаберные полости (Bedore, Kajiura, and Johnsen, 2015). Как установила Кристина Бедор, в результате этих действий животное снижает напряженность своего электрического поля почти на 90% и вдвое сокращает риск оказаться в пасти врага. При виде краба каракатица ничего подобного не делает, поскольку краб электрические поля не улавливает.

239


Вюрингер основала организацию Sharks and Rays Australia («Акулы и скаты Австралии»), призванную охранять рыбу-пилу и ее родичей (Wueringer, 2012). Грозное орудие, превращающее рыбу-пилу в виртуоза электрорецепции, считается ценным трофеем и к тому же легко запутывается в рыболовных сетях. Все пять видов рыбы-пилы относятся к вымирающим, причем три из них находятся на грани полного исчезновения.

240


В одной научной статье утверждается, что электрическое чувство есть у крота-звездоноса, но Кен Катания, искавший его у звездоносов, когда только начал с ними работать, говорит, что никакого подтверждения этому не обнаружил.

241


Неизвестно, почему так много животных утратило электрорецепцию, особенно учитывая, что под водой она так хорошо помогает находить затаившуюся добычу. Брюс Карлсон, по его собственным словам, пока не слышал ни одного мало-мальски стоящего предположения. «Это какая-то загадка», – говорит он.

242


У каждой из этих групп образовались в итоге собственные электрорецепторы, не такие, как у других (и только у акул и скатов они названы в честь Лоренцини). Однако в основе своей структура у них, несмотря на внешнее разнообразие, одна и та же. Почти всегда это пора, ведущая с поверхности тела в заполненную желеобразной субстанцией камеру, на дне которой располагаются сенсорные клетки. Во многих случаях эти структуры развивались из боковой линии, но у гвианского дельфина электрорецепторы представляют собой модифицированные сумки вибрисс, теперь лишенные волосков и заполненные электропроводящим желе.

243


И происходило это тоже примерно в одно время (Lavoue et al., 2012). У обеих групп рыб пассивная электрорецепция появилась в период от 110 до 120 млн лет назад, а активная – еще через 15–20 млн лет.

244


Исключение составляет ехидна, но и ей нужно погружать электрорецепторы во влажную почву.

245


Кроме того, при наличии электрических меток шмели начинали быстрее различать цветы схожей окраски (Clarke et al., 2013).

246


Перейти на страницу:

Похожие книги

100 великих тайн из жизни растений
100 великих тайн из жизни растений

Ученые считают, что растения наделены чувствами, интеллектом, обладают памятью, чувством времени, могут различать цвета и общаться между собой или предостерегать друг друга. Они умеют распознавать угрозу, дрожат от страха, могут звать на помощь; способны взаимодействовать друг с другом и другими живыми существами на расстоянии; различают настроение и намерения людей; излучение, испускаемое ими, может быть зафиксировано датчиками. Они не могут убежать в случае опасности. Им приходится быть внимательнее и следить за тем, что происходит вокруг них. Растения, как оказывается, реагируют на людей, на шум и другие явления, а вот каким образом — это остается загадкой. Никому еще не удалось приблизиться к ее разгадке.Об этом и многом другом рассказывает очередная книга серии.

Николай Николаевич Непомнящий

Ботаника / Научно-популярная литература / Образование и наука
География растений
География растений

Гумбольдт (Humboldt) Александр (14.9.1769, Берлин, - 6.5.1859, там же), немецкий естествоиспытатель, географ и путешественник. Член Берлинской АН (1800), почётный член Петербургской АН (1818). Родился в семье придворного саксонского курфюрста. Брат В.Гумбольдта. В 1787-92 изучал естествознание, экономические науки, право и горное дело в университетах во Франкфурте-на-Одере и Гёттингене, в Гамбургской торговой и Фрейбергской горной академиях. В 1790 вместе с Г.Форстером, оказавшим на него глубокое влияние, путешествовал по Франции, Нидерландам и Англии. Первая научная работа, написанная Г. с позиций господствовавшего тогда нептунизма, была посвящена базальтам (1790). В 1792-95 Г. служил по прусскому горному ведомству. В 1793 было опубликовано его ботанико-физиологическое исследование «Подземная флора Фрейберга», в которой Г. обобщил свои наблюдения о тайнобрачных растениях. Его опыты над раздражимостью нервных и мускульных волокон описаны в монографии 1797.В 1799-1804 Г. вместе с французким ботаником Э.Бонпланом путешествовал по Центральной и Южной Америке. Вернувшись в Европу с богатыми коллекциями, он более 20 лет обрабатывал их в Париже вместе с другими видными учёными. В 1807-34 вышло 30-томное «Путешествие в равноденственные области Нового Света в 1799-1804 гг.» (рус. пер., т.1-3, 1963-69), большую часть которого составляют описания растений (16 тт.), астрономо-геодезические и картографические материалы (5 тт.), другую часть - зоология и сравнительная анатомия, описание путешествия и др. По материалам экспедиции Г. опубликовал ряд других работ, в том числе «Картины природы» (1808, рус. пер., 1855 и 1959).В 1827 переехал из Парижа в Берлин, где исполнял обязанности камергера и советника прусского короля. В 1829 совершил путешествие по России - на Урал, Алтай и к Каспийскому морю. Природа Азии была освещена им в работах «Фрагменты по геологии и климатологии Азии» (т.1-2, 1831) и «Центральная Азия» (т.1-3, 1843, рус. пер., т.1, 1915). Позднее Г. попытался обобщить все научные знания о природе Земли и Вселенной в монументальном труде «Космос» (т.1-5, 1845-62, рус. пер., т.1-5, 1848-63; 5-й том остался незавершённым). Этот труд Г. - выдающееся произведение передовой материалистической натурфилософии 1-й половине 19 в. Произведения Г. оказали большое влияние на развитие естествознания (Ч.Дарвин, Ч.Лайель, Н.А.Северцов, К.Ф.Рулье, В.В.Докучаев, В.И.Вернадский и др.).Разработанные им методологические принципы о материальности и единстве природы, взаимосвязях явлений и процессов, их взаимообусловленности и развитии были высоко оценены Ф.Энгельсом (см. «Диалектика природы», 1969, с.166). Он называл имя Г. в ряду др. учёных, творческая деятельность которых послужила развитию материалистического направления в естествознании, пробивала брешь в метафизическом образе мышления.Исходя из общих принципов и применяя сравнительный метод, Г. создавал физическую географию, призванную выяснить закономерности на земной поверхности, в её твёрдой, жидкой и воздушной оболочках. Воззрения Г. послужили основой общего землеведения (общей физической географии) и ландшафтоведения, а также географии растений и климатологии. Г. обосновал идею закономерного зонального распространения растительности на поверхности Земли (широтная и вертикальная зональность), развивал экологическое направление в географии растений. В связи с последним уделял большое внимание изучению климата и впервые широко применил для его характеристики среднестатистические показатели, разработал метод изотерм и составил схематическую карту их распределения для Сев. полушария. Г. дал подробную характеристику континентального и приморского климатов, указал на причины их различий и процессы формирования.Круг научных интересов Г. был настолько широк, что современники называли его «Аристотелем 19 в.». Он был связан дружбой и научными интересами с И.В.Гёте, Ф.Шиллером, П.Далласом, Д.Ф.Араго, К.Гауссом, Л.Бухом, в России - с А.Я.Купфером, Ф.П.Дитке, Н.И.Лобачевским, Д.М.Перевощиковым, И.М.Симоновым, В.Я.Струве.Г. являлся поборником гуманизма и разума, выступал против неравенства рас и народов, против захватнических войн. Именем Г. назван ряд географических объектов, в том числе хребты в Центральной Азии (хребет Улан-Дабан) и Северной Америке, гора на о. Новая Каледония, ледник на С.-З. Гренландии, река и несколько населённых пунктов в США, ряд растений, минерал и кратер на Луне. Имя братьев Александра и Вильгельма Г. носит университет в Берлине (ГДР).

Александр Гумбольдт , Е. В. Вульф

Ботаника / Образование и наука