Читаем Неоткрытая планета полностью

Как при взрыве, мгновенно повышается давление. Температура и так достаточно высока. А ведь во Вселенной все тела построены из одних и тех же атомов. Могут быть в метеорите атомы углерода? Да! Но, если так… Почему бы не превратиться углероду, точнее, графиту в алмаз? Почему бы не произойти тому же самому, что произошло в земных недрах?

И действительно, в камнях, падавших с неба, не раз находили алмазы. Да и не очень маленькими были эти небесные драгоценности. Правда, история о том, будто бы в конце прошлого века в метеорите был найден столь крупный алмаз, что им украсили перстень русского царя, оказалась легендой. Миллиметрами измеряются их размеры.

Но так ли все же это? Ученые решили проверить. В лаборатории искусственно воспроизвели встречу метеорита с Землей. На ничтожные доли секунды ударная волна сжимала графит, и одновременно резко повышалась температура. Возникли крошки-алмазики диаметром в сорок микрон.

Но как же с миллиметровыми алмазами? Сорок микрон — это всего четыре сотых миллиметра. До целых миллиметров далеко!

Однако ничего необъяснимого тут нет. Просто при падении настоящего метеорита давление было больше лабораторных трехсот тысяч атмосфер. Только и всего.

Искусственный алмаз — бесспорно одно из самых интересных достижений техники наших дней. Когда несколько лет назад из-под пресса, сжимающего с исполинской силой графит, извлекли, наконец, крохотные, едва различимые глазом алмазики, — это была победа.

Двести тысяч атмосфер — далеко не все, что нужно для превращения невзрачного, мягкого серого графита в наитвердейший алмаз. Камеру с графитовым сырьем нужно еще разогреть, и ни мало ни много, как до четырех тысяч градусов!

Нельзя ли «смягчить» условия опыта? Нельзя ли снизите давление, уменьшить температуру? Оказалось, можно.

Химикам известны вещества — катализаторы, которые не вступают в реакцию, но помогают ей. Попробовали применить катализаторы и здесь.

Между слоями графита положили слои разных металлов. Металл плавится, проникает в графит, и… пока еще никто не знает, что там происходит. Но важно, что близ тоненькой металлической пленки начинается интенсивная перестройка, перегруппировка атомов графита.

Одна кристаллическая решетка переходит в другую, и притом уже не при двухстах тысячах, а при ста тысячах атмосфер, уже не при четырех тысячах, а при двух с половиной тысячах градусов. Любопытно, что при разной температуре получаются алмазы разных цветов: при самой низкой — черные, а потом — зеленые, желтые, белые.

Видимо, и природа создавала алмазы тоже в разных условиях. Оттого и находят эти драгоценные камни то «желтой воды», то «голубой», то «белой».

Итак, сначала миллиметровые крупинки, потом — годовое производство почти полутонны технических алмазов.

И все-таки, как бы ни важны были для нас искусственные алмазы — технические либо иные, — не менее, если не более, важно другое.

Создать искусственный алмаз — значит повторить то, что происходило на огромных глубинах.

Пусть все действие разыгрывается в крошечной камере, а лишь маленький цилиндрический стерженек подвергается испытаниям чудовищным давлением и нагревом. Все равно — перед нами модель Плутонии. Она поможет нам подготовиться к настоящему путешествию туда.

Зная, как ведут себя различные металлы, попав между двух огней — давлением и температурой, конструктор сможет выбрать наилучший материал для подземохода. Зная, как ведут себя, попав в такое горнило, минералы, он сможет представить себе, с чем же придется встретиться его подземному кораблю. И, наконец, ученые смогут, пользуясь такой моделью, проверить свои предположения и расчеты, которые они пока только и могут делать, когда говорят о строении Земли на больших глубинах.

Алмаз — не единственный искусственный минерал. Мы привыкли к синтетическим материалам, капрону и нейлону, лавсану и поролону и множеству других, к искусственным шелку, шерсти, коже, меху. Но камень… Казалось бы, он-то уж, по крайней мере, подлинное произведение природы!

Очень дороги и редки изумруды, рубины и сапфиры. После алмазов — это самые драгоценные камни на земле. И так же, как алмазы, они нужны технике: ими, например, режут металлы, и каменный резец служит намного дольше, чем режущий инструмент из твердого сплава.

Но вот беда — эти природные ценности не только редки. Они еще и очень малы: доли грамма и самое большее, один-два грамма — уже предел, уже рекорд.

В лабораториях научились выращивать красные кристаллы рубинов, оранжевые, сиреневые и синие сапфиры, зеленые изумруды, многоликий — днем зеленый, вечером красный — александрит. Лабораторные рекорды исчисляются десятками и даже сотнями граммов.

Еще один лабораторный минерал — стиповерит. Похожий на него камень найден в одном из метеоритных кратеров. Он, видимо, образовался при ударе метеорита о Землю.

А гранит? Гранит, который украшает наши города? Им облицованы здания, из него сделаны постаменты памятников, лестницы и ограды набережных, парков, скверов…

Перейти на страницу:

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука