Читаем Новый Мир ( № 11 2007) полностью

Сегодня трудно сказать, как именно рассуждали в школе Пифагора, доказывая несоизмеримость стороны квадрата и его диагонали. От старых времён дошло до нас чисто геометрическое, и притом чрезвычайно изящное, доказательство отсутствия общей меры, но является ли оно тем самым первоначальным доказательством — это неизвестно. Сейчас наиболее популярно сведбение вопроса к вопросу из теории чисел. Именно используя прямую и обратную теоремы Пифагора, легко обнаружить, что несоизмеримость стороны и диагонали квадрата равносильна невозможности решить в целых числах уравнение 2x2=y2. (Мы говорим здесь лишь о положительных целых числах; разумеется, нулевые значения икса и игрека дают решение.) Боюсь, что в нашей средней школе эту равносильность не разъясняют, а очень надо бы: на этом примере демонстрируется и соотношение между прямой и обратной теоремами, и то, как одна невозможность перетекает в другую. Доказательство же указанной равносильности происходит очень просто и состоит, как и доказательство любой равносильности, из двух частей. В первой части доказывается, что если бы диагональ и сторона квадрата были соизмеримы, то существовали бы такие целые числаxиy, что 2

x2 =y2. Во второй части доказывается обратное утверждение: если бы такие числа существовали, то и диагональ оказалась бы соизмерима со стороной. В первой части используется прямая теорема Пифагора: если диагональ и сторона соизмеримы, то их общая мера укладывается в стороне какое-то числоxраз, а в диагонали какое-то числоyраз; тогда по теореме Пифагора 2x
2 =y2. Во второй части используется обратная теорема Пифагора: если найдутся такие целые числаxиy, что 2x2 =
y2, то по этой обратной теореме треугольник с длинами сторонx,xиyбудет прямоугольным и его можно достроить до квадрата со стороной длиныx
и диагональю длиныy. Таким образом, великое пифагорейское открытие было не только замечательным само по себе, но и проложило дорогу к установлению отсутствия решений у уравнений. Обнаружить, что какое-то уравнение не имеет решения (в целых числах, как в нашем примере, или в действительных числах, как уравнениеx2 = -1), подчас бывает не менее важно, чем его решить. Заметим ещё, что доказательство отсутствия целочисленных решений у уравнения 2x2 =y2 настолько просто, что доступно школьнику младших классов; боюсь, что в школах его не излагают.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже