Перейдем, однако, к сути названных проблем.
Непосредственное наблюдение подсказывает, что всякое чётное число, большее двух, удаётся представить в виде суммы двух слагаемых, каждое из которых является простым числом: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, 12 = 5 + 7, ..., 24 = 5 + 19, ..., 38 = 7 + 31 и т. д. Однако проверке может быть подвергнуто лишь ограниченное количество чётных чисел, а всего их бесконечно много. Имеющиеся свидетельства, полученные от просмотра конечного (пусть гигантского) количества примеров, не могут гарантировать, что когда-нибудь в будущем не появится астрономически большого чётного числа, для которого разложение на два простых слагаемых невозможно. А ведь современные компьютеры позволяют строить и использовать для важных практических целей числа с сотнями десятичных знаков. Вот и встаёт вопрос:
Теперь о проблеме близнецов. Заметим, что встречаются очень близко расположенные друг к другу простые числа, а именно такие, расстояние между которыми равно 2. Пример: 41 и 43. Такие числа называются
Осознание того, что есть простые по формулировке вопросы, столетиями ждущие ответа, представляется поучительным. Не менее поучительно осознание того, что есть и проблемы другого типа, не ждущие решения по причине того, что решения не существует в принципе.
Принято считать, что первой по времени проблемой, относительно которой доказано принципиальное отсутствие решения, была приписываемая школе Пифагора проблема нахождения общей меры двух отрезков. Осторожные выражения «принято считать» и «приписываемая» означают, что как о бесспорных датировках, так и о бесспорном авторстве идей, относящихся к столь глубокой древности, говорить затруднительно. Мы всё же будем придерживаться традиционной версии, к тому же она достаточно правдоподобна.