Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Такого рода ранжирование обнаруживает некоторое сходство с тем, что мы иногда наблюдаем в области искусства или техники. Великие произведения искусства действительно «ближе к Богу», чем менее значительные творения. У художников нередко возникает чувство, что в своих величайших произведениях они открывают вечные истины, существовавшие уже до них в некотором высшем смысле [67], в то время как менее значительные произведения могут быть более случайными, являясь по своей природе всего лишь порождениями простых смертных. Точно также и новое инженерное решение с очень красивой структурой, позволяющее достичь значительных результатов через применение простой и неожиданной идеи, может с полным на то основанием рассматриваться скорее не как изобретение, а как открытие.

Однако, высказав все эти соображения, я не могу отделаться от ощущения, что в случае математики вера в некоторое высшее вечное существование — по крайней мере для наиболее глубоких математических концепций, — имеет под собой гораздо больше оснований, чем в других областях человеческой деятельности. Несомненная уникальность и универсальность такого рода математических идей по своей природе существенно отличается от всего того, с чем приходится сталкиваться в области искусства и техники. Точка зрения, согласно которой математические понятия могут существовать в такого рода вневременном, высшем смысле, была впервые высказана еще в древности (около 360 года до н. э.) великим греческим философом Платоном, и поэтому ее часто называют математическим платонизмом. Она играет важную роль в дальнейшем изложении.

В главе 1 я довольно много места уделил обсуждению точки зрения сильного искусственного интеллекта, согласно которой мыслительные явления находят свое воплощение в рамках математического понятия алгоритма. В главе 2 я особо подчеркнул, что алгоритм есть действительно очень глубокое и «Богом данное» понятие. В этой главе я старался доказать, что такие «Богом данные» математические идеи существуют в определенном смысле вне времени и независимо от нас смертных. Не могут ли эти соображения служить своего рода подтверждением справедливости концепции сильного искусственного интеллекта, допуская возможность некоего высшего существования мыслительной деятельности? Это вполне возможно — и я даже собираюсь далее привести ряд соображений в поддержку в чем-то похожей точки зрения. Но если у мыслительных явлений и вправду имеется такое вместилище, я все же не думаю, что это может относиться и к понятию алгоритма. Тут нужно что-то более «тонкое». Последующее обсуждение будет в значительной степени опираться на тот факт, что связанные с понятием алгоритма объекты составляют очень узкую и ограниченную часть математики. Следующая глава даст некоторое представление об огромных возможностях и изяществе неалгоритмической математики.

Глава 4

Истина, доказательство и интуиция

Программа Гильберта для математики

Что есть истина? Как мы составляем наши суждения о том, что в мире является справедливым, верным, а что — нет? Следуем ли мы некоторому алгоритму, которому отдается предпочтение среди прочих, менее эффективных, в процессе всемогущего естественного отбора? Или же возможен некий иной путь — не алгоритмизированный, а основанный на особой проницательности, интуитивный, инстинктивный — позволяющий угадывать правду? Это представляется нелегким вопросом. Наши суждения зависят от сложных взаимосвязанных комбинаций данных, поставляемых органами чувств, и наших размышлений и догадок. Более того, во многих реальных ситуациях не может существовать единого мнения по поводу того, что на самом деле

истинно, а что — ложно. Чтобы упростить задачу, рассмотрим только лишь математическую истину. Как мы формируем суждения — а может, даже и наши «стопроцентно верные» знания — при ответе на вопросы из области математики? Там уж, по крайней мере, все должно быть не так размыто, очерчено более ясно. Там не может возникать вопросов об истинности — или все-таки может? Что же, в конце концов, есть математическая истина?

Вопрос об этой истине возник не сегодня, он уходит корнями в античность, к греческим философам и математикам — и, несомненно, еще дальше, в глубь веков. Однако, несколько великих открытий и поразительных прозрений здесь были сделаны не далее как в XX столетии. Эти новые достижения заслуживают того, чтобы постараться их понять. Они носят фундаментальный характер и непосредственно касаются вопроса о том, являются ли наши мыслительные процессы полностью алгоритмизированными по своей природе или нет. Четко разобраться в этом — задача, имеющая для нас весьма важное значение.

Перейти на страницу:

Все книги серии Синергетика: от прошлого к будущему

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки