Читаем Очевидное? Нет, еще неизведанное… полностью

Существование аберрации показывало бы, что эфир не увлекается Землей. Значит, при движении Земли относительно неподвижных звезд вблизи нее должен возникать «эфирный ветер».

И естественно задать вопрос: можно ли обнаружить «эфирный ветер» при помощи других оптических явлений? Несложные теоретические соображения сразу привели к заключению: «Да, можно».

Например, коэффициент преломления света в случае, если Земля не увлекает эфир, должен быть разным в зависимости от того, движется Земля навстречу источнику света (звезде) или от него.

Проделали опыт — ничего не обнаружили. А точность приборов позволяла увидеть предсказанный теорией эффект.

Опыт Араго — 1818 год!

Такой результат очень смущал. С одной стороны, аберрация как будто подтверждала теорию неувлекаемого эфира. А с другой стороны, опыты с коэффициентом преломления противоречили этой теории.

Далее. С самой аберрацией также не все было хорошо. Угол наклона телескопа определяется отношением пути, который он «проезжает» за время, пока свет проходит от вершины телескопической трубы до основания, к ее длине. Или, что то же, угол наклона определяется отношением v/c.

Точнее φ = v/

c[44]. Причем (и это очень существенно) здесь с по своему смыслу не что иное, как скорость распространения света именно внутри трубы телескопа.

И вот кто-то (автор не узнал, кто именно[45]) проделал исключительно эффектный опыт — трубу телескопа залил водой.

Скорость распространения света в воде отлична от скорости в воздухе и составляет примерно 3/4 ее. Следовательно, угол аберрации звезд для таких «водяных» телескопов должен измениться, увеличившись в 4/3 раза.



Проделали опыт, измерили угол и получили, что в «водяном» телескопе он остается прежним.

Это уже ни на что не было похоже!

Однако все неприятности на время притушил Френель, предложив очень произвольную и очень остроумную гипотезу о характере увлечения эфира сплошными средами. Он сказал: допустим, что плотность эфира в сплошных средах больше, чем в пустоте. Тогда эфир в пустоте — «внешний эфир» — движущимся телом не увлекается. А эфир, который находится внутри тела, частично увлекается. Френель мотивировал это тем, что количество эфира, втекающего в движущееся тело, должно равняться количеству вытекающего. А поскольку плотность эфира внутри тела больше, чем снаружи, то количество эфира внутри останется постоянно только тогда, когда скорость движения «внутреннего эфира» относительно тела меньше, чем «внешнего эфира».

Такая теория объясняла и опыты с коэффициентами преломления и опыты с «водяными» телескопами.

Расчеты, проведенные на основе теории Френеля, показывали, что в принципе эффект-то есть. Коэффициент преломления действительно должен меняться в зависимости от движения тела относительно эфира. И соответственно, аберрация у «водяного» телескопа также должна быть отлична от аберрации в «нормальном» телескопе. Эффект есть. Но в результате частичного увлечения он очень мал. Значительно меньше, чем ожидалось. И относительные изменения коэффициента преломления получаются порядка, v2/c2, а не

v/c, то есть «второго порядка малости». (Для Земли v2/c2 ≈ 10–8). Но такие поправки настолько малы, что проверить их экспериментально не представляется возможным. Ведь из доступных нам движений относительно эфира наиболее быстрым является только движение Земли (30 км/сек!).

Здесь впервые упоминается о квадратичном по отношению к V/C
эффекте. Его поискам физики посвятили почти все XIX столетие.

Точно так же аберрация в «водяных» телескопах должна отличаться от аберрации в обычных телескопах на величину порядка v2/c2. Достаточно же хороших приборов для обнаружения таких ничтожных изменений не существовало. Поэтому после апелляции Френеля вынесение смертного приговора эфиру было пока отложено.

Мы уж очень долго следим за историей эфира. Самое поучительное, пожалуй, то, как упорно физики держались за эту идею. Теории эфира следовали одна за другой: эфир вихревой, эфир с неравномерной плотностью, эфир, построенный аналогично смолам, эфир, напоминающий систему зубчатых колес. Потом эфиры увлекаемые, неувлекаемые и увлекаемые частично!

Было бы очень опрометчиво насмехаться над всеми этими эфирами.

Теории эфира строились крупнейшими учеными. Эти теории были изящны, тонки, интересны: в них вкладывалось много таланта и выдумки. Все это делалось, чтобы спасти волновую теорию, потому что представить волны вне среды, состоящей из каких-то частиц, физики не могли.

Но чем дальше, тем яснее становилось, что эфир какой-то выродок среди физических субстанций.

Во-первых, никто не мог создать такой теории, которая удовлетворительно объясняла бы весь комплекс известных фактов.

А во-вторых, гипотетический эфир приходилось наделять столь удивительными качествами, делать до того странные допущения, что примириться с таким эфиром ученые не могли.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное