Читаем Очевидное? Нет, еще неизведанное… полностью

Скорее даже наоборот. В интервале между созданием теории Френеля (частичное увлечение эфира в сплошных телах) и опытом Майкельсона (о котором мы сейчас расскажем) теория неувлекаемого эфира имела и крупные достижения.

Успехи теории эфира.

Во-первых, аберрацию света теория неувлекаемого эфира объясняла сразу.

Во-вторых, эфир устоял против обвинения, что «в первом порядке» эффект движения относительно него не удавалось обнаружить.

Отсутствие эффектов «первого порядка» в опытах со сплошными средами объяснил, как помните, Френель; причем теория Френеля получила блестящее подтверждение. В 1851 году Физо сделал опыт по проверке теории Френеля. Мы не будем разбирать схемы этого опыта и только заметим — об эксперименте Физо не кто-нибудь, а сам Майкельсон написал: «Произведенный им опыт — один из самых остроумных, когда-либо сделанных физиками».

Так вот, опыт Физо дал точное совпадение с предсказаниями Френеля. Впоследствии Майкельсон проверил результаты Физо и снова убедился, что они правильны.

И наконец, в-третьих. В 1842 году Ганс Христиан Допплер, используя гипотезу неувлекаемого эфира, теоретически установил, что при движении источника или приемника световых сигналов относительно эфира частота световых волн (или цвет света), воспринимаемая наблюдателем, отлична от «истинной», когда приемник и источник света покоятся относительно эфира. И вскоре, исследуя спектры звезд, получили качественные подтверждения этого предсказания.

Следует несколько наивный рассказ о явлении Допплера.

Вот схема эффекта Допплера в теории неувлекаемого эфира.

1. Приемник и источник неподвижны относительно эфира. Свет источника воспринимается в приемнике с частотой ω.

2. Источник покоится относительно эфира, а приемник движется со скоростью V. В приемнике отмечается, что свет имеет частоту ω′, отличную ω. (При сближении источника и приемника ω′ > ω; при удалении — ω′ < ω.)

3. Приемник покоится, источник движется с той же скоростью V. Свет воспринимается с частотой ω″, причем ω″ > ω, но не равна ω′, хотя относительная скорость источника и приемника не изменилась.

Вот последняя фраза очень важна. Если справедлива теория неувлекаемого эфира, то даже в том случае, когда относительная скорость источника и приемника одна и та же, воспринимаемая частота света различна в зависимости от того, движется ли относительно эфира приемник или же источник света.



Чтобы не очень отвлекаться, ограничимся замечанием, что, по Допплеру, теория эффекта изменения частоты воспринимаемых световых волн абсолютно аналогична соответствующему эффекту для звуковых волн. Это совершенно естественно, поскольку для звука существует неувлекаемый эфир — атмосфера.

И сейчас мы несколько отвлечемся, чтобы подробнее рассказать об эффекте Допплера. На это есть несколько причин. Но мы ограничимся ссылкой на две.

Во-первых, эффект Допплера играет исключительную роль в разнообразных областях физики. В частности, использование Допплер-эффекта — один из самых мощных экспериментальных методов современной астрофизики. А во-вторых, об эффекте Допплера почему-то у многих обычно смутное представление, хотя сущность явления очень просто понять.

Сейчас мы решим задачу примерно за 6–7-й классы средней школы. Задача совершенно точно отражает суть эффекта Допплера для звука, а также явилась бы совершенно точной аналогией Допплер-эффекта для световых волн, если бы была правильна теория неувлекаемого эфира.

Военно-морская аналогия.

Итак, есть некий порт A. От него со скоростью v удаляется некий корабль B. Естественно, скорость корабля определена относительно воды. По неким причинам связь между портом и кораблем поддерживается следующим не слишком удобным способом.

Через промежутки времени Δt начальник порта отправляет на корабль посыльные катера.

Капитан корабля делает то же самое. Он также отправляет катера в порт через интервалы Δt. Скорость катеров относительно воды обозначим c. Естественно, c > v. Иначе ни один катер из порта не попал бы на корабль.

Требуется узнать, какой интервал времени между двумя последующими приемами катеров из порта пройдет на корабле и каков интервал между приходами катеров в порту.

Найдем время, которое тратит катер, чтобы добраться из порта до корабля.

Если в момент отправления первого катера расстояние до корабля было a, то время пути катера определяется очевидным равенством:

S = c · t1пут = a + vt

1пут, и отсюда:

t1пут = a/(c – v).

В момент, когда отправится следующий катер, корабль будет находиться уже на расстоянии a + Δt · v, и время пути этого катера, естественно, равно

t2пут = (a + Δt · v)/(c - v

)

Если первый катер был отправлен в момент t0, а второй соответственно в момент t0 + Δt, то времена их прибытия на корабль соответственно:

t1прибыт = t0 + a/c – v;


t2прибыт = t0

 + Δt + a + Δt · v/c – v;

А интервал времени между приемами катеров, очевидно, равен:

Δtприема = t2прибыт – t1прибыт = Δt(1 + v/c – v).

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное