Читаем Очевидное? Нет, еще неизведанное… полностью

Или если ввести β = v/c:

Δtприема = Δt(1 + β/1 – β) = Δt/(1 – β).

На эту формулу стоит взглянуть. Но этого мало, полезно ее сравнить со следующей.

Как видите, интервал между двумя приемами катеров больше, чем интервал между моментами их отправления. Это, конечно, совершенно понятно, потому что второй катер находился в худших условиях — ему нужно пройти бóльший путь, чем предыдущему.

Обратим теперь внимание, что в выражение для Δtприема не входит величина a — начальное расстояние корабля от порта. Иными словами, для любой пары катеров, следующих друг за другом, растяжение интервала между их прибытием на корабль определяется только отношением

(v/c).

Если корабль не удаляется, а приближается, достаточно изменить знак скорости корабля. Характер решения не изменится. (Надеюсь, что в этом читатели могут убедиться самостоятельно.)

Итак, Δtприема = Δt/(1±β)

.

Знаки – и + соответствуют удалению и приближению корабля.

Если ввести новую характеристику — частоту отправления и приема катеров, а она, естественно, определится как ν = 1/Δt, то мы получим:

νприема = νотправл(1±β).

Рассмотренный пример совершенно точно показывает, как изменится частота звуковых волн, если источник покоится относительно атмосферы, а приемник движется.

Если бы была правильна теория неувлекаемого эфира, точно так же должно было обстоять и с электромагнитными волнами.

Полагаю, что читатели смогут сами определить частоту приема в порту катеров, посланных с корабля, и получить формулу:

νприема = νотправл/(1±β).

Здесь + соответствует приближению, а – удалению корабля.

Как видите, хотя качественно в обоих случаях частота меняется одинаково, количественно должны наблюдаться разные результаты в зависимости от того, источник или приемник движутся относительно эфира, даже если скорость их относительно эфира одинакова[47].

Часто приходится читать, что, слушая рев сирены электропоезда, проезжающего мимо наблюдателя на полотне дороги, легко можно непосредственно наблюдать эффект Допплера.

Должен заметить, что, очевидно, это возможно лишь для людей с очень развитым слухом. Обычно же фиксируется не изменение частоты, а изменение громкости (интенсивности). Поэтому наблюдатели без особых музыкальных данных и несколько «испорченные» образованием отождествляют кривую изменения интенсивности звука с теоретически предсказанным изменением частоты и приходят к выводу, что кривая для изменения частоты в акустическом эффекте Допплера имеет примерно такой вид.



На самом же деле по оси ординат здесь откладывается интенсивность, а не частота.

Кривая же, характеризующая изменение частоты и обычно не воспринимаемая на слух, представлена на следующем рисунке.



ω — «истинная» частота сирены (то есть частота, наблюдаемая, если источник и наблюдатель находятся относительно атмосферы).

При скорости примерно 65 километров в час изменение высоты звука достигает приблизительно полутона (то есть вместо, скажем, ноты «до» мы должны услышать «до диез»). Однако поскольку сирена поезда редко дает «чистый» (монохроматичный) звук, вся наблюдаемая картина несколько хитрее. Могу повторить, что реально эффект Допплера без специальных лабораторных устройств наблюдать затруднительно, если вы не обладаете хорошим музыкальным слухом.

Сообщается о неких преимуществах музыкальных людей.

Вообще-то стóит добавить, что обычно наблюдаемая картина описывается несколько более сложными формулами, чем приведенные выше.

Мы рассмотрели те случаи, когда скорость направлена вдоль прямой, соединяющей источник и приемник. Когда это не так (а это почти всегда не так), вместо полной скорости v следует брать ее проекцию на прямую, соединяющую источник и приемник.

Мы ограничимся этим замечанием, отметив только, что, как показано на предыдущем рисунке, в момент, когда электричка проезжает мимо наблюдателя и проекция скорости на прямую, соединяющую наблюдателя и электричку, очевидно, равна нулю, воспринимаемая частота равна истинной.

Теперь можно обратить внимание на те любопытные следствия, что вытекают из эффекта Допплера для световых волн.

Когда приемник и источник света сближаются, воспринимаемая частота растет. Двигаясь со скоростью, достаточно близкой к скорости света, навстречу какой-либо звезде, мы увидим не ту спектральную часть ее излучения, что расположена в области видимых световых волн, а инфракрасную часть спектра или даже радиоволновую.



Теоретически вполне возможно увидеть яркое радужное сияние вокруг радиобашни, если только приближаться к ней со скоростью, сравнимой со световой.

Напротив, достаточно быстро удаляясь от источника, можно своими глазами наблюдать гамма-кванты. Какой-либо атомный котел явится в этом случае ярчайшим источником света.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное