Читаем Очевидное? Нет, еще неизведанное… полностью

И наконец, взвешивая, скажем, кусок железа холодным и нагретым, невозможно заметить какую-либо разницу масс, хотя разница в энергии хорошо заметна.

Почему же, наблюдая при каком-то химическом (или любом другом) процессе заметную разницу в энергетических состояниях тел, мы не можем заметить изменения его массы?

Это оказывается довольно очевидным, если только вспомнить основное соотношение: Е = mc2. Стоит немного изменить сомножитель m (массу), чтобы значительно изменилась энергия E.

Масса значительно «дороже» энергии. Один грамм массы эквивалентен «астрономической» энергии E = 1 г · 9 · 1020 см2/сек2

 = 9 · 1020 эргов. И обратно, один эрг энергии соответствует смехотворно малой массе 1/9 · 1020 грамма.

Энергия, соответствующая массе в один грамм, колоссальна. Такой кинетической энергией обладает ракета с массой примерно 1500 тонн, посланная со скоростью, достаточной для преодоления земного тяготения (11,2 км/сек).



Часто приходится читать: «Из-за большой затраты энергии во время футбольного матча спортсмен теряет в весе 2–4 килограмма». Это так и есть на самом деле. Но, вероятно, ни один из центрфорвардов не представляет, какое количество энергии теряет он вместе с массой. Если эту массу перевести в энергию, ею можно было бы выбить за пределы земного тяготения футбольный мяч с массой в 5 миллионов тонн.

А энергии, выделяемые (или затрачиваемые) в обычных химических реакциях, связаны с такими ничтожными изменениями массы, что наши приборы не смогли бы зарегистрировать эти исчезающие малые дефекты, даже если увеличить их в тысячу раз.

Точно так же теоретически безусловное увеличение массы нагретых тел практически сказывается в настолько далеком знаке после запятой, что является только чисто умозрительным курьезом.

Положение, однако, существенно меняется, если перейти к ядерным реакциям. Еще в 1905 году Эйнштейн предполагал, что процессы радиоактивности могут служить проверкой изменения массы. Тогда это было гипотезой. Сейчас теория подтверждена при изучении тех многочисленных ядерных реакций, что известны в наши дни.

Атомная энергия. Дефект массы.

Энергия, освобождаемая или поглощаемая при ядерных реакциях, в сотни тысяч и миллионы раз превышает энергетический выход в обычных химических реакциях. Соответственно и изменения массы при ядерных реакциях в миллионы раз больше. Если, например, при реакции образования воды на каждые две грамм-молекулы водорода и одну грамм-молекулу кислорода (то есть на 18 граммов вещества) выделяется 136 тысяч малых калорий, 2H2 + O2 = 2H2O + 136 000 калорий, то при ядерной реакции образования ядер гелия из лития и водорода Li7

 + H1 = 2He4 + Q на каждые 7 граммов ядер лития и 1 грамм ядер водорода освобождается примерно 5 · 109 калорий (5 миллиардов). При таких выходах энергии сравнительно легко можно наблюдать изменения массы[84].

Но и в ядерных реакциях изменение массы обычно не превышает долей процента. Подобно скупому рыцарю, природа тщательно хранит энергию, и даже при таких потрясениях, как ядерные взрывы, расходуются лишь малые доли запасов.

Для примера приведем точный энергетически-массовый баланс упомянутой реакции[85].

Li7 + H1 = 2He4 + Q.

В результате точных измерений определили, что масса одного атома равна:

лития (Li7) = 7,01818 · 1,66 · 10-24 г;

водорода (H1

) = 1,00813 · 1,66 · 10-24 г и

гелия (He4) = 4,00389 · 1,66 · 10-24 г.

Подсчитаем массу реагирующих веществ и продуктов реакции:

Li7 + H1 → 2He4

7,01818 · 1,66 · 10-24 + 1,00813 · 1,66 · 10–24

2 · 4,0039 · 1,66 · 10-24 г. Сложив, получим: 8,02631 · 1,66 · 10-24

 г → 8,00778 · 1,66 · 10-24 г.

Слева имеется избыток массы, равный 3,08 · 10–26 г. Освобождающаяся в реакции энергия (она в равенстве добавляется справа) должна соответствовать этой массе, и значит:

Q = Δmc2 = 3,08 · 10-26 г · 9 · 1020 см/сек = 2,72 · 10-5 эрга.

При этой реакции освобождающаяся энергия проявляется в виде кинетической энергии образовавшихся ядер гелия (α-частиц).

Экспериментальные данные великолепно подтверждают теоретические расчеты как в этой, так и в сотнях других ядерных реакций. Точно измерив массы всех атомных ядер, можно предвидеть, как будет протекать данная ядерная реакция — с выделением или с поглощением энергии; предсказать, какое именно количество энергии освободится или поглотится (свяжется).

В разобранном примере мы уверенно предсказали освобождение энергии, и приведенная реакция может быть использована как исключительно мощный источник энергии. На два реагирующих ядра атомов лития и водорода освобождается огромная энергия — 2,76 · 10-5 эрга!

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное