Читаем Очевидное? Нет, еще неизведанное… полностью

Как предполагают, фотонные корабли будут набирать скорость в результате отдачи мощного потока квантов электромагнитного излучения — фотонов. Направленное электромагнитное излучение уносит импульс, и поскольку суммарный импульс замкнутой системы — «ракета + излучение» — должен сохраняться, ракета приобретает равный по величине и противоположно направленный импульс.

Во всем сказанном нет ничего нового по сравнению с обычным объяснением принципа ракетного движения. Несколько необычен лишь способ — реактивная отдача при помощи фотонов. Для будущих звездолетов избран столь экстравагантный двигатель потому, что наиболее выгодный способ отдачи горючего с борта ракеты такой, когда реактивная струя имеет относительно корабля максимально возможную скорость — скорость света[88]. Однако подобный способ отдачи подразумевает выброс массы в виде квантов электромагнитного излучения — фотонов, так как достигнуть скорости света можно, только если масса покоя разгоняемой частицы равна нулю![89]

Кстати, столь же успешно, как о фотонных, можно рассуждать об электронных, протонных и мезонных ракетах. Если, скажем, у электронов отдачи скорость относительно ракеты очень близка к скорости света, то подобный реактивный двигатель очень незначительно проигрывает по сравнению с фотонным в отношении импульса, получаемого ракетой на единицу выброшенной массы.

А фантазируя о техническом осуществлении двигателя, способного разгонять ракету до световых скоростей, пожалуй, легче представить себе отдачу импульса при помощи электронов. Впрочем, выбор объекта фантазии — дело вкуса.

Прежде всего уточним, почему вообще световые скорости непременно сопутствуют мечтам о звездных полетах.

Ближайшая к Солнцу звезда (она так и названа «Ближайшая Центавра») отделена от нас куском пространства в 4,2 светового года. Соответственно время, необходимое для путешествия со скоростью V, равно

t

 = 4,2 · c/v.

Поэтому даже для полета к ближайшей из звезд ракета должна достигнуть относительно солнечной системы скоростей, сравнимых со скоростью света. Иначе экспедиция продлится десятки тысяч лет. Например, при весьма приличной для «каботажного» межпланетного путешествия скорости 100 километров в секунду добираться к созвездию Центавра пришлось бы примерно 12 600 лет. Подобные сроки не очень удобны, и потому, если уж лететь к звездам (хотя бы и в мечтах), необходимы ракеты со скоростями, более или менее близкими к скорости света.

Итак, прикинем, что необходимо для путешествия. Ограничимся ближайшими созвездиями: скажем, для начала направимся к самому близкому — созвездию Центавра.

Субрелятивистские ракеты и путешествия к ближайшим созвездиям — фантастика, хотя и беспочвенная, но относительно допустимая.

Если корабль смог бы развить скорость 100 тысяч километров в секунду, весь полет занял бы 28–30 лет. Время не маленькое, но в общем приемлемое. Поэтому удовлетворимся пока такой «медленной» ракетой[90].

Прежде всего необходимо представить полезную массу ракеты — иначе говоря, всю массу за вычетом горючего. Естественно, здесь есть богатый материал для полета мысли, однако, скажем, 100 тысяч тонн — наименьшее значение, которое можно выбрать (ибо даже в фантазии надо сохранять совесть).

100 тысяч тонн! На первый взгляд цифра громадная. Стоит, однако, вспомнить, что водоизмещение крупнейших океанских кораблей достигает 50–80 тысяч тонн. Вряд ли размеры звездолета можно мыслить меньше размеров линкора, хотя бы потому, что, как мы сейчас убедимся, необходим колоссальный запас горючего, а его надо же где-то хранить. А корпус? Корпус должен быть неизмеримо прочнее, чем у линкора, поскольку самые тяжелые артиллерийские дуэли представляются детской перестрелкой из рогаток рядом с той ужасной непрерывной бомбардировкой, которая ждет ракету в пути.

Пытаясь представить себе массу ракеты, можно, конечно, забыть об оборудовании, о научной аппаратуре, о всех сложнейших приборах управления полетом, но нельзя сбрасывать со счетов сам реактивный двигатель. Необычайно мощный, основанный, безусловно, на использовании ядерного горючего, а следовательно, окруженный исключительной защитой, он один должен весить (даже в мечтах) по меньшей мере десятки тысяч тонн.

Короче, самые отчаянные энтузиасты должны согласиться, что, считая полезную массу ракеты в 100 тысяч тонн (105), мы еще занижаем ее возможное значение в десятки раз. И если в дальнейшем мы останемся верны этой цифре, то единственно потому, что вся беспочвенность идеи очень хорошо видна даже в этом случае.

Пойдем на уступки мечтателям и, проявив известную резвость мысли, вообразим, что наш корпус успешно выдерживает соударения с космической пылью и защищает от космического излучения. Вообще-то говоря, никакой ультракорпус не поможет, но допустим, что с этой задачей мы справились.

По весьма уважительным причинам истребляется межзвездная среда.
Перейти на страницу:

Все книги серии Эврика

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное