Читаем Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни полностью

Молекула РНК устроена гораздо проще целой клетки, что облегчает математическое моделирование. Каждая цепочка РНК состоит из четырех видов азотистых оснований, которые могут соединяться друг с другом в любых комбинациях. И каждое из четырех оснований может находиться в молекуле в любой из 100 позиций, что дает 4100 возможных структур. Это чудовищно много — это единица с шестьюдесятью нулями, так что в любом первичном пруду может быть лишь крохотная часть всех возможных РНК-последовательностей, и вероятность того, что среди них окажется тот самый проторепликатор, крайне мала. Жизнь все так же «тяжела на подъем».

Чтобы понять, как могла бы справиться с этой проблемой квантовая механика, представим каждую возможную молекулярную цепочку оснований как последовательность нулей и единиц — или как серию бросков монеты, при каждом из которых может выпасть орел или решка. Искомая протомолекула-репликатор — это уникальная последовательность орлов и решек в серии. Теперь запишем первичную цепочку кубитами, а не битами. Это проще, чем кажется, поскольку кодирующая способность такой молекулы обеспечивается определенным типом химической связи — водородной связью, которая, в сущности, представляет собой протон, соединяющий два атома. Как заметил больше 50 лет назад физик Пер Олов Левдин, генетический код ДНК или РНК в таком случае представляет квантовый код позиций протона. Самое главное, протоны, как и другие квантовые частицы, могут туннелировать (как вы помните, это одно из удивительных свойств квантового мира, позволяющее частицам проникать через непреодолимые, в понимании классической физики, барьеры) из одной кодовой позиции (нуль, орел) в другую (единица, решка).

Попробуем использовать эту схему для решения проблемы зарождения жизни. Представим протогенетический материал в виде последовательности кубитов, а не битов, покидая, таким образом, область сложного поиска химических соединений и переходя к задаче, решаемой с помощью квантовых вычислений. Вспомним, что каждая цепь кубитов, соответствующая отдельной молекуле, может существовать в виде квантовой суперпозиции всех возможных конфигураций. Очень малый компонент этой громадной квантовой суперпозиции и будет той особой молекулой — искомым репликатором. Так что он обязательно встретится даже в крохотном первичном прудике — если, конечно, это квантовый пруд.

Разумеется, квантовое состояние очень неустойчиво и быстро сводится лишь к одной определенной конфигурации, которая почти гарантированно не имеет правильной последовательности молекул, чтобы самореплицироваться. Казалось бы, мы ничего не выигрываем по сравнению с классическим представлением о случайном переборе возникающих и распадающихся молекулярных структур. Но все дело в том, что проба очередной конфигурации без участия квантовой механики всякий раз задействует чрезвычайно медленный процесс разрушения и перестройки молекулярных связей. Напротив, после коллапса квантового состояния молекулы каждый ее протон практически сразу готов к очередному туннелированию в суперпозицию обеих позиций и восстановлению исходной квантовой суперпозиции всех возможных кодирующих структур. Квантовая протомолекула-репликатор способна повторять поиск механизма создания собственных копий в квантовом мире непрерывно и невероятно быстро.

Итак, пока система может вернуться в квантовый мир, обретение и разрушение состояния квантовой суперпозиции является процессом обратимым и намного более быстрым, чем классический процесс образования и разрушения химических связей.

Непрерывную квантовую орлянку прерывает одно событие. Как только квантовая реплицирующаяся протомолекула коллапсирует в то самое — редчайшее — требуемое состояние, она начинает делать свои копии — и это невозвратно переводит всю систему из квантового в классический мир. Это тонкий момент: в терминологии отца квантовой механики Нильса Бора — «необратимый акт амплификации». Создав свою копию, квантовая монета навсегда лишается возможности восстановить исходное состояние, и первая автокопия возникает уже в классическом мире.

Таким образом, благодаря квантовой механике немыслимо трудный поиск протомолекулы-репликатора становится несравненно более эффективным, чем в рамках классической химии. Чтобы сработал квантовый сценарий, первичная биомолекула — искомый проторепликатор — должна обладать способностью исследовать великое множество различных структур посредством квантового туннелирования своих частиц в разные позиции. Знаем ли мы молекулу, владеющую этим умением? Да, знаем! Это биомолекулы живых клеток, электроны и протоны которых до сих пор отличаются относительно слабой связью, что и позволяет им туннелировать в различные позиции. Как я уже говорил, протоны ДНК и РНК также способны туннелировать. Следовательно, первичный репликатор должен был напоминать молекулу РНК, собранную в нежесткую конструкцию водородными связями и слабыми электронными связями, позволяющими частицам вольно перемещаться по всей структуре и формировать суперпозицию триллионов возможных конфигураций.

Перейти на страницу:

Все книги серии Антология научно-популярной литературы

Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни
Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино. Для написания книги профессор Джим Аль-Халили собрал команду ученых и мыслителей, мировых лидеров в своих областях, в числе которых такие звезды, как Мартин Рис, Иэн Стюарт, Сэт Шостак, Ник Лейн и Адам Резерфорд. Вместе они представляют весь комплекс вопросов и достижений современной науки в этом поиске, и каждый из них вносит свой уникальный вклад.

Джованна Тинетти , Йэн Стюарт , Моника Грейди , Ник Лэйн , Сара Сигер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Опасная идея Дарвина: Эволюция и смысл жизни
Опасная идея Дарвина: Эволюция и смысл жизни

Теория эволюции посредством естественного отбора знакома нам со школьной скамьи и, казалось бы, может быть интересна лишь тем, кто увлекается или профессионально занимается биологией. Но, помимо очевидных успехов в объяснении разнообразия живых организмов, у этой теории есть и иные, менее очевидные, но не менее важные следствия. Один из самых известных современных философов, профессор Университета Тафтс (США) Дэниел Деннет показывает, как теория Дарвина меняет наши представления об устройстве мира и о самих себе. Принцип эволюции посредством естественного отбора позволяет объяснить все существующее, не прибегая к высшим целям и мистическим силам. Он демонстрирует рождение порядка из хаоса, смысла из бессмысленности и морали из животных инстинктов. Принцип эволюции – это новый способ мышления, позволяющий понять, как самые возвышенные феномены культуры возникли и развились исключительно в силу биологических способностей. «Опасная» идея Дарвина разрушает представление о человеческой исключительности, но взамен дает людям возможность по-настоящему познать самих себя. Книгу перевела М. Семиколенных, кандидат культурологии, научный сотрудник РХГА.

Дэниел К. Деннетт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
История целибата
История целибата

Флоренс Найтингейл не вышла замуж. Леонардо да Винчи не женился. Монахи дают обет безбрачия. Заключенные вынуждены соблюдать целибат. История повествует о многих из тех, кто давал обет целомудрия, а в современном обществе интерес к воздержанию от половой жизни возрождается. Но что заставляло – и продолжает заставлять – этих людей отказываться от сексуальных отношений, того аспекта нашего бытия, который влечет, чарует, тревожит и восхищает большинство остальных? В этой эпатажной и яркой монографии о целибате – как в исторической ретроспективе, так и в современном мире – Элизабет Эбботт убедительно опровергает широко бытующий взгляд на целибат как на распространенное преимущественно в среде духовенства явление, имеющее слабое отношение к тем, кто живет в миру. Она пишет, что целибат – это неподвластное времени и повсеместно распространенное явление, красной нитью пронизывающее историю, культуру и религию. Выбранная в силу самых разных причин по собственному желанию или по принуждению практика целибата полна впечатляющих и удивительных озарений и откровений, связанных с сексуальными желаниями и побуждениями.Элизабет Эбботт – писательница, историк, старший научный сотрудник Тринити-колледжа, Университета Торонто, защитила докторскую диссертацию в университете МакГилл в Монреале по истории XIX века, автор несколько книг, в том числе «История куртизанок», «История целибата», «История брака» и другие. Ее книги переведены на шестнадцать языков мира.

Элизабет Эбботт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Педагогика / Образование и наука