Как и следовало ожидать, значения всех показателей растут по мере увеличения количества случайно выбранных узлов (рис. 2.7.5 и 2.7.6). Однако темпы этого роста зависят от каждого конкретного показателя. Более того, форма зависимости эффективности поиска от количества попыток различна для разных показателей. Процент оптимальных решений, совпадающих с глобальным максимумом, увеличивается линейно с ростом количества проверенных узлов. С другой стороны, процент оптимальных решений, расположенных в оптимальной области, и среднее значение целевой функции всех оптимальных решений растут нелинейно по мере увеличения количества попыток: в начале рост происходит быстрыми темпами, затем дальнейшее увеличение числа попыток приводит лишь к незначительному росту эффективности поиска.
Эффективность случайного поиска выше для оптимизационного пространства, соответствующего целевой функции «прибыль» по сравнению с пространством «процент прибыльных сделок» (сравни левые графики рис. 2.7.5 и 2.7.6). Это полностью совпадает с результатами целенаправленного поиска, полученными в предыдущем разделе. Кроме того, для целевой функции «прибыль» изменчивость показателя «среднее значение оптимального решения» уменьшается при увеличении числа попыток (правый график рис. 2.7.5). В то же время для целевой функции «процент прибыльных торговых циклов» такая зависимость не наблюдается (правый график рис. 2.7.6).
По показателю «процент оптимальных решений, совпадающих с глобальным максимумом» случайный поиск уступает покоординатному подъему и методу Хука−Дживса. Однако при использовании достаточного количества попыток случайный поиск оказывается более эффективным по двум другим показателям. Для целевой функции «прибыль» случайный поиск становится эффективнее покоординатного подъема по показателям «среднее значение оптимального решения» и «процент попадания в оптимальную область» начиная с 400 попыток. При использовании 500 попыток данный метод превосходит и вторую методику, Хука−Дживса (сравни рис. 2.7.5 с данными таблицы 2.7.1). Для целевой функции «процент прибыльных сделок» случайный поиск становится эффективнее покоординатного подъема и метода Хука−Дживса по проценту попаданий в оптимальную область начиная с 600 попыток. По среднему значению оптимального решения случайный поиск превосходит эти две методики начиная с 700 попыток (сравни рис. 2.7.6 с данными таблицы 1).
Проведенный анализ приводит к ряду полезных выводов относительно применимости случайного поиска для оптимизации торговых стратегий. В общем виде можно утверждать, что при увеличении числа попыток до определенного уровня, вероятность того, что наилучшее из полученных решений окажется достаточно близким к глобальному максимуму, может быть удовлетворительно велика. В частности, случайный поиск может использоваться, если (1) размеры оптимизационного пространства позволяют исследовать порядка 20 % его ячеек и (2) имеется предварительная информация об унимодальности оптимизационного пространства. Последнее возможно в тех случаях, когда в процессе построения стратегии уже производилась оптимизация путем полного перебора, в ходе которой форма пространства была установлена. Если пространство оказывается близким по форме к тому, которое было получено нами для целевой функции «прибыль» (рис. 2.2.2), то при дальнейших доработках и модификациях стратегии можно использовать метод случайного поиска.
2.8. Построение оптимизационной инфраструктуры: решения и компромиссы
Построение инфраструктуры для оптимизации торговых стратегий вообще и опционных стратегий в частности требует принятия целого ряда сложных решений, от продуманности которых зависит не только количество ресурсов, затрачиваемых на выполнение необходимых процедур, но и надежность получаемого результата. В большинстве случаев сложность решений заключается в необходимости поиска компромисса между минимизацией времени, необходимого для вычислений, и максимизацией объема получаемой информации, необходимой для эффективного поиска оптимума.