Читаем Основы кибернетики предприятия полностью

В большинстве наших систем допустимый интервал между вычислениями будет определяться запаздываниями, имеющими форму показательной функции (см. главу 8). Как мы увидим, интервал обязательно должен быть меньше продолжительности любого запаздывания первого порядка; желательно, чтобы он был меньше его половины. Поскольку запаздывания третьего порядка наиболее употребительны и поскольку они эквивалентны трем последовательным запаздываниям первого порядка, каждое из которых составляет одну треть запаздывания третьего порядка, интервал решений должен быть меньше одной шестой общей продолжительности самого короткого запаздывания третьего порядка в рассматриваемой системе.

Сформулированное правило является эмпирическим. Наилучший способ проверки правильности выбора интервала решений состоит в варьировании его величины и наблюдении за влиянием ее на результаты вычислений.

Особым критерием, определяющим максимально допустимую величину интервала решений, является взаимосвязь между значениями уровней и темпами потоков, входящих в эти уровни и исходящих из них. Интервал решений должен быть достаточно коротким, чтобы суммарный входящий или исходящий поток не вызывал больших изменений в содержании уровня за один интервал решений. Например, если возможен высокий темп исходящего потока при небольшой величине содержимого в уровне, то интервал решений должен быть достаточно коротким с тем, чтобы только часть содержимого уровня могла быть исчерпана за один интервал решений. Если интервал настолько велик, что на его протяжении из уровня может быть изъято содержимое в большем количестве, чем имелось в нем в начале интервала, то в конце интервала содержимое уровня будет выражаться отрицательной величиной, что не имеет смысла.

Есть другое, более существенное соображение, которое теоретически влияет на величину интервала решений. Теория проб, описывающая прерывистые потоки в системах с обратной связью, устанавливает определенную зависимость между величиной интервала проб (в данном случае — интервала решений) и такими, представляющими интерес для понимания системы характеристиками, как «поле допуска». (Оно показывает, насколько велики могут быть колебания в действиях системы.) Интервал решений должен быть существенно короче периода колебаний тех компонентов системы, которые отличаются наиболее короткой периодичностью, определяемой путем вычислений. Можно полагать, что применение приведенного выше эмпирического правила всегда будет приводить к интервалу, достаточно короткому, чтобы можно было точно отобразить отдельные компоненты, и что этот интервал будет меньше максимально допустимого, исходя из характеристик системы в целом.

6. 6. Избыточность информации, заключенной в обозначениях типа уравнения и времени


Обозначение времени, добавляемое к обозначениям переменных в уравнениях, содержит в себе часть такой же информации, которая уже передается индексом, характеризующим тип уравнения (то есть L, R, А и т. д.). Действительно, в уравнениях уровней (L

) значения переменных определяются для момента времени К на основе значений переменных величин в правой части уравнения, относящихся к моменту времени J и интервалу JK. Вспомогательные уравнения (А),
по которым определяются значения величин в момент времени К, используют информацию об уровнях и других вспомогательных переменных в этот момент времени (а также, если это целесообразно, информацию о темпах в интервале JK). Уравнения темпов (R) дают значения темпов в интервале KL
на основе значений уровней и вспомогательных переменных, относящихся к моменту времени К (а также, если это целесообразно, на основе значений темпов за предыдущий интервал JK).

Таким образом, создается некоторая избыточность информации, заключенной, с одной стороны, в обозначении типа уравнений, а с другой — в обозначении времени; однако опыт показывает, что в противном случае может легко возникнуть путаница в определении типов уравнений и в обращении с обозначениями времени. Поэтому для большей ясности следует использовать оба вида обозначений.

6. 7. Интегрирование уравнений первого порядка вместо интегрирования уравнений более высокого порядка


При рассмотрении формы уравнений уровней[40], которые представляют собой разностные уравнения, отмечалось, что для нахождения уровней по заданным темпам используется последовательное решение уравнений первого порядка. В точных расчетах, связанных с научными исследованиями, часто используется метод решения уравнений высшего порядка. В нашей работе для применения этого более строгого метода вычислений нет, по-видимому, оснований, тем более что практическое применение его связано с серьезными затруднениями.

Перейти на страницу:

Похожие книги

Идеальный руководитель. Почему им нельзя стать и что из этого следует?
Идеальный руководитель. Почему им нельзя стать и что из этого следует?

По мнению доктора Адизеса, менеджмент любой организации должен выполнять четыре функции: производство результатов, администрирование, предпринимательство и интеграцию. Для того чтобы осуществлять их одновременно, руководителю необходимо обладать многочисленными, порой взаимоисключающими, качествами. Адизес делает вывод: менеджмент — слишком сложный процесс, чтобы с ним мог справиться один человек. Идеального менеджера просто нет в природе.Как же быть? Чтобы компания была эффективной в ближайшей и долгосрочной перспективе, ею должна руководить команда менеджеров, состоящая из людей с взаимодополняющими стилями управления. По какому принципу подбирать сотрудников в такую команду? Как им правильно строить общение, чтобы даже неизбежные конфликты использовать для принятия качественных решений?На эти и многие другие вопросы отвечает гуру менеджмента Ицхак Калдерон Адизес.Книга адресована руководителям, сотрудникам кадровых агентств и всем, кого интересуют вопросы управления организацией.

Ицхак Калдерон Адизес

Деловая литература / Управление, подбор персонала / Финансы и бизнес