Читаем Освой самостоятельно С++ за 21 день. полностью

37:       cout << "(1)dog (2)cat (0)Quit: ";

38:       cin >> choice;

39:       switch (choice)

40:       {

41:          case 0: fQuit = true;

42:          break;

43:          case 1: ptr = new Dog;

44:          break;

45:          case 2: ptr = new Cat;

46:          break;

47:          default: ptr = new Mammal;

48:          break;

49:       }

50:       if (fQuit)

51:       break;

52:       PtrFunction(ptr);

53:       RefFunction(*ptr);

54:       ValueFunction(*ptr);

55:    }

56:    return 0;

57: }

58:

59: void ValueFunction (Mammal MammalValue)

60: {

61:    MammalValue.Speak;

62: }

63:

64: void PtrFunction (Mammal * pMammal)

65: {

66:    pMammal->Speak;

67: }

68:

69: void RefFunction (Mammal & rMammal)

70: {

71:    rMammal.Speak;

72: }


Результат:

(1)dog (2)cat (0)Quit: 1

Woof

Woof

Mammal Speak!

(1)dog (2)cat (0)Quit: 2

Meow!

Meow!

Mammal Speak!

(1)dog (2)cat (0)Quit: 0


Анализ: В строках 5—25 определяются классы Mammal, Dog и Cat. Затем объявляются три функции — PtrFunction, RefFunction и ValueFunction. Они принимают соответственно указатель класса Mammal, ссылку класса Mammal и объект класса Mammal. После чего выполняют одну и ту же операцию — вызывают метод Speak.

Пользователю предлагается выбрать объект класса Dog или класса Cat, после чего в строках 43—46 создается указатель соответствующего типа.

Судя по информации, выведенной программой на экран, пользователь первый раз выбрал объект класса Dog, который был создан в свободной области памяти 43-й строкой программы. Затем объект класса Dog передается в три функции с помощью указателя, с помощью ссылки и как значение.

В том случае, когда в функцию передавался адрес объекта с помощью указателя или ссылки, успешно выполнялась функция-член Dog->Speak. На экране компьютера дважды появилось сообщение, соответствующее выбранному пользователем объекту.

Разыменованный указатель передает объект как значение. В этом случае функция распознает принадлежность переданного объекта классу Mammal, компилятор разбивает объект класса Dog пополам и использует только ту часть, которая была создана конструктором класса Mammal. В таком случае вызывается версия метода Speak, которая была объявлена для класса Mammal, что и отобразилось в информации, выведенной программой на экран.

Те же действия и с тем же результатом были выполнены затем и для объекта класса Cat.

Виртуальные деструкторы

В том случае, когда ожидается указатель на объект базового класса, вполне допустима и часто используется на практике передача указателя на объект производного класса. Что произойдет при удалении указателя, ссылающегося на объект производного класса? Если деструктор будет объявлен как виртуальный, то все пройдет отлично — будет вызван деструктор соответствующего производного класса. Затем деструктор производного класса автоматически вызовет деструктор базового класса, и указанный объект будет удален целиком.

Отсюда следует правило: если в классе объявлены виртуальные функции, то и деструктор должен быть виртуальным.

Виртуальный конструктор-копировщик

Конструкторы не могут быть виртуальными, из чего можно сделать вывод, что не может быть также виртуального конструктора-копировщика. Но иногда требуется, чтобы программа могла передать указатель на объект базового класса и правильно скопировать его в объект производного класса. Чтобы добиться этого, необходимо в базовом классе создать виртуальный метод Clone. Метод Clone должен создавать и возвращать копию объекта текущего класса.

Поскольку в производных классах метод Clone замещается, при вызове его создаются копии объектов, соответствующие выбранному классу. Программа, использующая этот метод, показана в листинге 11.11.

Листинг 11.11. Виртуальный конструктор-копировщик

1: //Листинг 11.11. Виртуальный конструктор-копировщик

2:

3: #include

4:

5: class Mammal

6: {

7:    public:

8:       Mammal:itsAge(1) { cout << "Mammal constructor...\n"; }

9:       virtual ^Mammal { cout << "Mammal destructor...\n"; }

10:      Mammal (const Mammal & rhs);

11:      virtual void Speak const { cout << "Mammal speak!\n"; }

12:      virtual Mammal* Clone { return new Mammal(*this); }

13:      int GetAgeconst { return itsAge; }

14:   protected:

15:      int itsAge;

16: };

17:

18: Mammal::Mammal (const Mammal & rhs):itsAge(rhs.GetAge)

19: {

20:    cout << "Mammal Copy Constructor...\n";

21: }

22:

23: class Dog : public Mammal

24: {

25:    public:

26:       Dog { cout << "Dog constructor...\n"; }

27:       virtual ~Dog { cout << "Dog destructor...\n"; }

28:       Dog (const Dog & rhs);

29:       void Speakconst { cout << "Woof!\n"; }

30:       virtual Mammal* Clone { return new Dog(*this); }

31: };

32:

33: Dog::Dog(const Dog & rhs):

34: Mammal(rhs)

35: {

36:    cout << "Dog copy constructor...\n";

37: }

38:

39: class Cat : public Mammal

40: {

41:    public:

42:       Cat { cout << "Cat constructor,,,\n"; }

43:       ~Cat { cout << "Cat destructor...\n"; }

44:       Cat (const Cat &);

45:       void Speakconst { cout << "Meow!\n"; }

Перейти на страницу:

Похожие книги

Сущность технологии СОМ. Библиотека программиста
Сущность технологии СОМ. Библиотека программиста

В этой книге СОМ исследуется с точки зрения разработчика C++. Написанная ведущим специалистом по модели компонентных объектов СОМ, она раскрывает сущность СОМ, помогая разработчикам правильно понять не только методы модели программирования СОМ, но и ее основу. Понимание мотивов создания СОМ и ее аспектов, касающихся распределенных систем, чрезвычайно важно для тех разработчиков, которые желают пойти дальше простейших приложений СОМ и стать по-настоящему эффективными СОМ-программистами. Показывая, почему СОМ для распределенных систем (Distributed СОМ) работает именно так, а не иначе, Дон Бокс дает вам возможность применять эту модель творчески и эффективно для ежедневных задач программирования.

Дональд Бокс

Программирование, программы, базы данных / Программирование / Книги по IT