• В конечном счете четырехуглеродный фрагмент, оставшийся от лимонной кислоты после реакций декарбоксилирования, превращается обратно в щавелевоуксусную кислоту. Тем самым цепочка реакций замыкается в цикл, который называют
Большинство реакций, входящих в цикл Кребса, являются окислительно-восстановительными. Вот типичный пример такой реакции:
HOOC–CH2
−CHOH−COOH + НАД+ → HOOC–CH2−CO−COOH + НАДH + H+Здесь перед нами окисление яблочной кислоты (слева) до щавелевоуксусной (справа). Между этими двумя кислотами есть одно-единственное различие: там, где в яблочной кислоте находится гидроксильная группа (−CHOH−), в щавелевоуксусной кислоте на ее месте кетогруппа (−CO−). Чтобы превратить гидроксильную группу в кетогруппу, нужно отнять у молекулы два атома водорода (H). Именно это и делает фермент под названием малатдегидрогеназа. Это название легко расшифровать: малат — анион яблочной кислоты, а дегидрогеназы — общее название всех ферментов, отнимающих водород. Ферменты-дегидрогеназы — это одна из подгрупп ферментов-оксидоредуктаз, о которых мы говорили выше. Как и во многих других подобных реакциях, отобранные у яблочной кислоты два атома водорода тут же захватывает кофермент НАД+
, который превращается при этом в НАДН (плюс протон в растворе).Итак, в матриксе митохондрий идет целая серия окислительно-восстановительных реакций, конечные продукты которых, во-первых, углекислый газ и, во-вторых, отобранный у субстрата водород (см. рис. 11.8). Углекислый газ — это отход, который просто выдыхается (его молекулы так малы, что даже внутренняя мембрана митохондрии для них проницаема). Теперь от исходного субстрата, то есть от глюкозы, ничего не осталось, кроме отобранных атомов водорода, судьба которых совершенно особая.
Дыхательная цепь
Итак, молекула глюкозы, с которой мы начали разговор о дыхании, наконец-то полностью распалась. И произошло это в ходе цикла лимонной кислоты. Давайте посмотрим на главные особенности этого процесса.
Во-первых, он идет в матриксе митохондрий (то есть в замкнутом пространстве, ограниченном внутренней мембраной митохондрии), и только там.
Во-вторых, он не требует молекулярного кислорода (O2
).В-третьих, он хотя и сопровождается синтезом АТФ, но в очень малом количестве (всего одна молекула на каждый оборот цикла).
Главный продукт цикла лимонной кислоты — восстановленные формы свободных кофакторов. «Восстановленные» в данном случае, конечно, значит «нагруженные водородом». Кофакторов с такой функцией, фигурирующих на выходе из цикла лимонной кислоты, существует два. Первый из них — это уже хорошо знакомый нам НАД+
. Со вторым же мы еще не сталкивались. Не будем вникать в его молекулярную структуру, а ограничимся названием, благо оно красивое: флавинадениндинуклеотид, сокращенно ФАД. Химический предшественник ФАД хорошо известен медикам как водорастворимый витамин B2. Молекула ФАД может присоединить к себе два атома водорода, перейдя в восстановленную форму, а может и отдать их обратно:ФАД + 2H ⇌ ФAДH2
В грубом приближении (которого мы и будем тут придерживаться) можно вообще игнорировать ФАД и свести весь «окислительно-восстановительный сюжет» к обороту НАД, вклад которого все равно существенно больше. Если говорить точно, в результате каждого оборота цикла лимонной кислоты восстанавливаются три молекулы НАД+
и одна молекула ФАД. Легко сосчитать, что вместе они поглощают восемь атомов водорода.Проблема в том, что никакой механизм регенерации этих кофакторов в цикле лимонной кислоты не предусмотрен. А это должно означать, что использовать их можно только один раз. Дальше они нагружаются водородом и в рамках самого цикла лимонной кислоты разгружены быть не могут. Что же с ними делать?
Вот тут-то и начинается самое интересное. Но чтобы оценить, насколько это интересно, нужно (в который уже раз) небольшое вступление.