Эта конформация, кроме того, удовлетворяет
С другой стороны, молекула пептида в растворе может постоянно — и быстро — переходить из одной равноправной конформации в другую, а множество пептидных молекул в растворе могут одновременно принимать разные конформации. Поэтому любой экспериментальный метод, измеряющий, например, расстояние между какими-то атомами молекулы в растворе, на выходе даст лишь усредненную величину, которая, вообще говоря, может не относиться ни к одной из этих конформаций в отдельности. (Сходный эффект использует оптический обман, именуемый кинематографом: кадры сменяются так быстро, что мы видим на экране плавный полет птицы, хотя на пленке запечатлены лишь прерывистые отдельные моменты этого полета.)
Этого недостатка экспериментальных методов лишены методы теоретические, расчетные — надо лишь научиться вычислять значения внутримолекулярной энергии, соответствующие каждой из возможных конформаций молекулы. Конформации, обладающие наиболее низкими энергиями, могут считаться наиболее устойчивыми, а конформации с высокими значениями энергии имеют малую вероятность осуществиться, и их можно исключить из рассмотрения. В результате получится не одна «усредненная» пространственная структура, а целый набор стабильных низкоэнергетических конформаций пептидной молекулы. Каждая из них может, в принципе, реализоваться в растворе и внести свой вклад в измеряемую «усредненную» структуру.
Процедура такого расчета и есть
С таким-то оборудованием некоторые отчаянные головы в разных странах взялись почти одновременно и независимо друг от друга за расчеты внутримолекулярных энергий конформаций аминокислот, пептидов и белков. Предстояло не только разработать удовлетворительные методы вычисления энергии в отдельной конформации, но и справиться с огромным — в перспективе — объемом таких вычислений. Для десятичленного пептида, например, число в принципе возможных конформаций оценивается как 1010
(прописью: десять миллиардов). Теоретический конформационный анализ обязан либо уметь рассчитать энергию каждой из них, либо объяснить, почему данная конформация исключена из рассмотрения.Минимальный участок змейки Рубика, позволяющий сделать линейную цепочку трехмерной, — это две жесткие призмы, соединенные шарниром. Точно так же минимальный фрагмент пептидного остова, способный к конформационным изменениям, — аминокислотный остаток, две пептидные группы, соединенные центральным атомом углерода (его еще называют Сα
; символ Сβ обозначает первый из атомов боковой цепи).