В этом фрагменте может быть лишь два угла вращения: вокруг связей N — С (φ) и Сα
— С (ψ); связь С — N не одинарная, а так называемая полуторная, и угол вращения вокруг нее почти всегда равен 180°, что обеспечивает максимальное удаление двух атомов Сα, входящих в состав пептидной группы. Повороты соседних элементов змейки Рубика друг относительно друга ограничены возможностями шарниров между ними; взаимные вращения соседних пептидных групп тоже ограничены. Рассчитав сумму энергий взаимодействий между всеми атомами аминокислотного остатка, можно построить егоПервая такая карта была рассчитана в 1963 году в Индии группой под руководством Г. Н. Рамачандрана для как можно более простой модели молекулы. Предполагалось, что атомы-шарики абсолютно твердые, а длины валентных связей и величины валентных углов фиксированны; вычисления проводились на обыкновенном настольном калькуляторе. На «карте Рамачандрана» фигурировали лишь два типа конформаций аминокислотного остатка (они же пары величин φ и ψ): «запрещенные» (сферы хоть одной пары шариков пересекаются) и «разрешенные» (ни одного пересечения нет).
Несмотря на все упрощения, карта хорошо объясняла известные к тому времени данные рентгеноструктурного анализа. Именно точки, соответствующие парам углов φ и ψ, полученным по атомным координатам белков и пептидов, найденным в эксперименте, ложились в «разрешенные», а не «запрещенные» области карты Рамачандрана. Правда, по мере появления новых экспериментальных пространственных структур белков стало ясно, что некоторые точки попадают и в «запрещенные» области. Но прецедент был создан: было показано, что даже грубые и заведомо неточные расчеты в какой-то степени отражают реальные конформационные возможности белков.
Уточнения модели начались с того, что взаимодействие между парами атомов («пружинка») было представлено в виде функции, зависящей от межатомного расстояния («
Последний способ, вообще говоря, более оправдан с точки зрения физики, поскольку использует более глубокие уровни строения атомов и молекул. Но неожиданным образом конформационные карты, построенные с использованием квантовых расчетов (по необходимости упрощенных), содержали низкоэнергетические («разрешенные») области, в которые значения углов φ и ψ, найденные в эксперименте, попадали крайне редко. Карты же, вычисленные с помощью эмпирических потенциальных функций, согласовались с экспериментом гораздо лучше.