Читаем Открытие без границ. Бесконечность в математике полностью

Путём аналогичных рассуждений можно доказать, что множество натуральных чисел и множество целых чисел  имеют одинаковую кардинальность. Чтобы подтвердить это, достаточно установить взаимно однозначное соответствие между ними, сопоставив всем положительным числам чётные, а всем отрицательным — нечётные. Таким образом, существует столько же целых чисел, сколько натуральных.

Счётные множества

Кантор также сформулировал очень важное понятие счётного множества. По определению, множество А называется счётным, если можно установить взаимно однозначное соответствие между А и подмножеством . В основе этого определения лежит очень простая идея, которую мы часто используем в повседневной жизни.

Когда мы заявляем, что места в зале кинотеатра пронумерованы, мы говорим о взаимно однозначном соответствии между подмножеством натуральных чисел и множеством кресел и сопоставляем каждому креслу число.

Мы уже показали, что множество целых чисел является счётным. Далее Кантор получил поистине удивительный результат: множество рациональных чисел  также является счётным. Он доказал, что существует столько же рациональных чисел, сколько и натуральных. Чтобы установить соответствие между натуральными и рациональными числами, Кантор использовал настолько простую схему, что остаётся только удивляться, почему никто не сделал этого раньше. Возможно, причина в том, что никто не считал это возможным, так как это противоречит элементарной интуиции.



Схема, придуманная Кантором, такова. Нужно построить таблицу рациональных чисел (напомним, что речь идёт о дробях) следующим образом: в первой строке записываются дроби, числитель которых равен 1, во второй — дроби, числитель которых равен 2, в третьей — 3 и т. д. Вычеркнем из каждой строки повторяющиеся дроби. Например, 2/2 — это то же самое, что 1/1 или 3/3, 2/4 — то же, что и 1/2, и т. д. Построив таблицу, обойдём все числа в порядке, указанном стрелками, начиная с 1/1. Мы обойдём все рациональные числа ровно один раз. Таким образом, взаимно однозначное соответствие между натуральными и рациональными числами устанавливается следующим образом:

1 -> 1/1

2 -> 1/2

3 -> 2/1

4 -> 3/1

5 -> 1/3

Самое удивительное в том, что мы установили взаимно однозначное соответствие между двумя множествами, одно из которых является дискретным (множество натуральных чисел), а другое — плотным (множество рациональных чисел).

Здесь бесконечность начинает понемногу приподнимать завесу тайны над своими удивительными загадками. Интуиция подсказывает, что счётными могут быть только дискретные множества, и тот факт, что плотное множество  также является счётным, был поистине удивительным. Мы подсознательно ассоциируем счётность с возможностью найти следующий элемент для данного, что невозможно в плотном множестве. Если мы рассмотрим предыдущую таблицу, то увидим, что 1/1 является первым числом, а следующим будет 1/2. Однако множество дробных чисел является плотным, поэтому между 1/1 и 1/2 находится бесконечное множество чисел. Так, нам известно, что 1/4 находится между 1 и 1/2, а в нашем перечне это число занимает шестое место.

* * *

МЫСЛИТЬ — ЭТО БОЛЬШЕ, ЧЕМ ГОВОРИТЬ

Согласно теории множеств Кантора, множество всех возможных слов, как произнесённых, так и записанных на бумаге, является счётным. Если учитывать, что множество знаков (букв, символов и т. д.) в языке конечно, то очевидно, что на его основе можно сформировать счётное множество. Другое дело — множество вещей, о которых мы можем подумать. Оно, очевидно, не является счётным. Мы можем представить, например, множество окружностей на плоскости, имеющее мощность континуум. Таким образом, всё, что мы можем сказать, поддаётся упорядочению, а всё, о чём мы можем подумать, не поддаётся или поддаётся лишь частично. Следовательно, можно упорядочить лишь часть наших мыслей, а большинство из них принадлежит к миру хаоса.


Буквы алфавита образуют ограниченное и, следовательно, счётное множество.

* * *

По этой причине с открытым Кантором понятием счётности оказалось тесно связано понятие непрерывности. Неизбежно возник вопрос: если расширить множество рациональных чисел иррациональными, будет ли полученное множество счётным?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже