Создатели БРТ говорят, что клетки и органы излучают электромагнитное поле, частота которого меняется при патологии. Если прибор БРТ регистрирует все эти поля, отделяя сигнал патологической частоты, инвертирует и подает излучение (или ток) на пациента, то исходные колебания подавляются. Можно даже не измерять поля конкретного пациента, если они одинаковы для всех людей и различны только для разных патологий.
Вопрос о том, какие колебания считать нормой, а какие патологией перед создателями БРТ вообще не стоит. Авторы постулировали, что гармонические колебания — норма, а негармонические — патология. Видимо, слово «гармония» у них ассоциировалось с эстетической гармонией, с нормой. То, что по теореме Фурье любое негармоническое колебание раскладывается на сумму гармонических составляющих и, наоборот, сумма гармонических колебаний от разных органов и систем даст на выходе суммарные негармонические колебания — это за пределами школьного курса физики. Этого пациенты обычно не знают, и им можно рассказывать про фильтрацию гармонических и негармонических, патологических и непатологических излучений.
Можно было бы обсудить возможность регистрации этих излучений, шумы и внешний фон, но главный вопрос — действительно ли ткани и клетки излучают что-то осмысленное, что можно использовать в лечении. Да, электрический ток и электромагнитное излучение создаются движущимися электрическими зарядами. В тканях и клетках движущиеся заряды — это ионы. Параметры излучения, которые они создают своим движением, определяются направлением движения зарядов, частотой их колебаний и моментом начала движения. Суммарное поле — сумма всех колебаний, и разделить его на отдельные ткани, органы или клетки невозможно. Все ионы во всех клетках, в крови, в лимфе, в межклеточной жидкости, движутся хаотично, и фактически можно зарегистрировать лишь один общий шум — электромагнитный фон.
Только очень большие массивы ионов клеток, организованные и синхронизированные в единый механизм движения, например при сокращении сердечной мышцы, могут давать явный, хотя и слабый, но осмысленный электрический сигнал. Он используется в электрокардиографии (ЭКГ). Однако для ионов в мозге, хотя там движение ионов синхронно при возбуждении нейронов, сигнал уже настолько зашумлен разной частотой колебаний и разной фазой из-за различной пространственной ориентации нейронов, что в записи электроэнцефалограммы (ЭЭГ) регистрируются лишь частотные ритмы — альфа, бета, гамма, характеризующие общее состояние возбуждения/торможения коры головного мозга и ее участков, но не отдельных клеток. И это несмотря на то, что в голове работают синхронно тысячи нейронов, а в них свершают осмысленные колебательные движения мириады ионов. Что уж говорить про излучение от отдельных клеток или бактерий…
То есть даже если и существуют особые движения ионов, то вычленить их электромагнитное излучение на фоне шумов всего организма невозможно. Да и подавить излучение не значит остановить их движение и вылечить пациента.
Гадание на частоте
Кроме биорезонансной терапии существует и т. н. биорезонансная диагностика. С ней дело еще хуже. БРТ хоть как-то связана с физикой, хотя бы внешне напоминает физиотерапию. БРД же ничего общего с наукой не имеет.
Создатели БРД говорят про частотный резонанс, но в плане регистрации электрического сопротивления кожи человека. Якобы на нормальных частотах сопротивление одно, а на патологических — другое, меньшее. И таким образом можно диагностировать патологию по уменьшению сопротивления кожи по сравнению с другими частотами.
Но это явно не так. Активное сопротивление кожи — это сопротивление постоянному току. Оно не зависит от частоты, никакой частоты здесь нет. Оно определяется емкостью в соответствии с законами физики. А та в свою очередь определяется не патологическими частотами, а физическими свойствами кожи — плотностью, толщиной, влажностью, температурой и так далее.
В курсе физики у студентов-медиков есть такой вопрос: «Электросопротивление кожи зависит от: а) интенсивности салоотделения; б) интенсивности потоотделения; в) степени кровенаполнения дермы; г) концентрации солей в тканевой жидкости; д) толщины эпидермиса; е) целостности эпидермиса. Какой пункт здесь ошибочный?» Из самой формулировки видно, что на сопротивление влияют несколько факторов, никак не связанных с заболеваниями. Далее, 90 % сопротивления кожи сосредоточено в эпидермисе, в роговом и ростковом слоях, это около 100 кОм. Остальной организм, все ткани и органы, имеют сопротивление не более 1 кОм, т. е. на два порядка меньше. Измеряя электросопротивление кожи, мы измеряем сопротивление эпидермиса.