Читаем Пятьдесят занимательных вероятностных задач с решениями полностью

«Попытай счастья» — азартная игра, в которую часто играют в игорных домах и во время народных гуляний. После того как игрок сделал ставку на один из номеров 1, 2, 3, 4, 5, 6, подбрасываются три игральные кости. Если номер играющего выпадает на одной, двух или трех костях, то за каждое появление этого номера игроку выплачивается первоначальная ставка, при этом возвращаются и его собственные деньги. В противном случае игрок теряет ставку. Каков средний проигрыш игрока при единичной ставке? (В действительности можно ставить на несколько номеров одновременно, но каждая ставка рассматривается отдельно.)

7. Переубеждение упрямого игрока

Браун всегда ставит один доллар на номер 13 в американской рулетке, вопреки совету своего благожелательного друга. Чтобы отучить Брауна от игры в рулетку, этот друг спорит с ним на 20 долларов, утверждая, что Браун останется в проигрыше после 36 игр. Имеет ли смысл Брауну принять такое пари?

(Большинство американских рулеток имеет 38 одинаково вероятных номеров. Если выпадает номер игрока, то он получает свою ставку обратно, плюс же сумму в 35-кратном размере, если нет — теряет свою ставку.)

8. «Масть» при игре в бридж

Часто приходится слышать, что некто при игре в бридж получил на руки 13 пик. Какова вероятность, при условии, что карты хорошо перетасованы, получить 13 карт одной масти? (Каждый из четырех игроков в бридж получает 13 карт из колоды в 52 карты.)

9. «Крэпс»

Игра в «крэпс», для которой нужна только пара костей и совсем немного времени — одна из популярнейших в Америке. С ней связана следующая поучительная задача на подсчет вероятностей.

Правила такие. Игрок бросает две кости и подсчитывает сумму выпавших очков. Он сразу же выигрывает, если эта сумма равна 7 или 11, и проигрывает, если она равна 2, 3 или 12. Всякая другая сумма — это его «пойнт». Если в первый раз выпадает «пойнт», то игрок бросает кости еще до тех пор, пока он или не выиграет, выбросив свой «пойнт», или не проиграет, получив сумму очков, равную 7. Какова вероятность выигрыша?

10. Эксперимент по психологии азартных игроков

(а). Урна содержит 10 черных и 10 белых шаров, отличающихся лишь цветом. Один шар вытаскивается наружу, и если его цвет совпадает с выбранным вами, то вы получаете 10 долларов, в ином случае — ничего. Сообщите максимальный взнос, который вы готовы сделать для участия в игре. Игра проводится лишь один раз.

(б). У вашего друга имеется много белых и черных шаров, и он заполняет ими урну по своему усмотрению. Вы выбираете «черное» или «белое», после чего из урны наудачу вытягиваете шар. Какую максимальную сумму вы готовы заплатить за участие в игре? Игра проводится только один раз.

Задачи без структуры (11 и 12)

О. Хелмер и Дж. Уильяме обратили внимание автора на ряд задач, которые они называют «задачами без структуры», но которые все же имеют вероятностный характер, хотя и не в обычном смысле.

11. Молчаливый союз

Двум незнакомым людям предлагается загадать произвольное натуральное число, причем если они оба называют одно и то же число, то получают премию. Какое бы число загадали вы?

12. Quo Vadis?[1]

Двое незнакомых людей, договорившись о том, как узнать друг друга, должны встретиться в определенный день и час в Нью-Йорке, городе, которого они оба не знают. Однако они забыли назначить место встречи. Куда им следует направиться, если они все же попытаются встретиться?[2]

13. Дилемма узника

Три узника, A, B и C, одинаково хорошего поведения ходатайствовали об освобождении на поруки. Администрация решила освободить двух из трех, что стало известно узникам, которые, однако, не знают, кто именно эти двое. У заключенного A в охране есть друг, который знает, кого отпустят на свободу, но A

считает неэтичным осведомиться у охранника, будет ли он, A, освобожден. Все же A хочет спросить об имени одного узника, отличного от самого A, который будет отпущен на свободу. Прежде чем спрашивать, он оценивает вероятность своего освобождения как 2/3. A думает, что если охранник скажет «B будет освобожден», то его шансы уменьшатся до ½, так как в этом случае будут освобождены либо A и B, либо B
и C. Однако A ошибается в своих расчетах. Объясните это.

14. Выбор купонов

Купоны в коробках занумерованы цифрами от 1 до 5, и для того, чтобы выиграть, надо набрать полный комплект из пяти купонов с разными номерами. Если из коробки вынимается один купон, то сколько коробок в среднем надо испытать, чтобы получить полный комплект?

15. В театре

Восемь юношей и семь девушек независимо приобрели по одному билету в одном и том же театральном ряду, насчитывающем 15 мест. Какое среднее число смежных мест занимают в этом ряду пары?

16. Выйдет ли второй в финал?

В теннисном турнире участвуют 8 игроков. Номер, вытаскиваемый игроком наудачу, определяет его положение в турнирной лестнице (рис. 1).

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии