Читаем Пятьдесят занимательных вероятностных задач с решениями полностью

В предположении того, что трубка разбивается случайно, из принципа симметрии выводим, что распределение длины каждой части с красной меткой, средней и с синей меткой одинаково и, значит, равны и их математические ожидания. Так как сумма этих величин постоянна и равна 9 см, то средняя длина куска трубки с красной меткой равна 3 см.

40. Решение задачи о первом тузе

Естественно считать, что принцип симметрии сохраняется и для дискретных распределений. Четыре туза делят колоду на 5 частей, каждая из которых содержит от 0 до 48 карт. Если два туза лежат подряд, то будем говорить, что длина соответствующего куска колоды равна нулю. Аналогично нулевую длину имеют части колоды, которые находятся до первого туза, если он лежит сверху, и за четвертым тузом, если он является последней картой в колоде. Согласно принципу симметрии средняя длина каждой части равна 48/5 = 9.6. Последующей картой должен быть туз, который является, таким образом, в среднем 10.6 картой.

41. Обсуждение задачи о поездах

Хотя на поставленные вопросы вряд ли можно дать «правильный» ответ, все же возможно разумное объяснение этих задач. Например, согласно принципу симметрии, если на отрезок бросается одна точка, то в среднем два полученных отрезка имеют одинаковую длину, так что в пункте (а) ответ равен 119, так как длина левого промежутка равна 59, 2·59 = 118 и 118 + 1 = 119.

Аналогично в пункте (б) можно предположить, что пять наблюденных номеров разбивают весь отрезок на шесть равных частей. Так как 60 − 5 = 55, то средняя длина первых пяти отрезков равна 11, и общее число номеров может быть оценено как 60 + 11 = 71 (рис. 16). Конечно, оценка не может быть абсолютно точной при многократном употреблении.

Рис. 16.

Указанный метод заставляет думать, однако, что в среднем при многократном использовании такие оценки мало отличаются от истинного значения N при большом числе наблюдений. Если неизвестное число N подлежит оценке во многих задачах, то, следуя каждый раз приведенному методу (извлечь выборку, построить оценку), мы в среднем будем близки к истинному значению при достаточно больших объемах выборок.

С другой стороны, может быть и так, что вас не интересует приближение в среднем или недоступно большое число наблюдений, но вы хотите угадать значение N, несмотря на то, что это маловероятно. Тогда разумно оценить N как наблюденный максимум из номеров. Если вы, например, знаете номера двух локомотивов, то вероятность того, что один из двух номеров — максимально возможный, равна или 2/N.

Иногда пользуются методом доверительного оценивания, при котором в качестве оценки предлагается некоторый интервал для неизвестного параметра. Ограничимся случаем одного наблюдения. Если наудачу извлечь один из номеров 1, 2, ..., N, то вероятность появления каждого номера равна 1/N. Поэтому вероятность того, что наш номер принадлежит некоторому множеству, равна числу элементов этого множества, деленному на N. Так, если, скажем, n

 — это случайный номер, а N — четное число, то P(n > N/2) = 1/2, для нечетных значений N эта вероятность несколько больше. Таким образом, если n случайно, то вероятность события n > N/2 не меньше 1/2. Если мы наблюдаем значение
n, а N не известно, то в качестве верхней границы для N мы можем предложить 2n. В каждом отдельном случае утверждение 2n > N верно или нет, однако, оно справедливо более, чем в половине случаев. Если желать увеличения процента правильных высказываний, то надо изменить доверительный предел.

Так, например,

и утверждение 3n ≥ N справедливо по крайней мере в 2/3 случаях. В нашей задаче, если мы хотим быть уверенными в справедливости нашего высказывания о значении числа N в 2/3 из 100% случаев, то можем сказать, что N

лежит в промежутке с концами 60 и 180.

Другим часто используемым методом для оценивания является метод максимального правдоподобия, согласно которому значение N выбирается таким образом, чтобы сделать наблюденную выборку наиболее вероятной. Так, например, если N = 100, то наше наблюденное значение 60 имеет вероятность 1/100, в случае же N = 60 эта вероятность равна 1/60. Мы не можем оценить N значением, меньшим 60, так как для N = 59 или меньшем вероятность появления номера 60 равна нулю. Следовательно, если n — наблюденный номер, то оценкой максимального правдоподобия для N является само n.

В задаче не предполагалось наличие добавочной информации, такой, как «это большая железная дорога, и на ней по крайней мере 100 поездов, но, наверное, меньшее, чем 100 000», которая, конечно, может быть полезна.

42. Решение задачи о коротком куске стержня

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии