Читаем Пятьсот двадцать головоломок полностью

292. Еще один парадокс с колесом.Два велосипедиста остановились на железнодорожном мосту где-то в Сассексе, когда мимо них проходил поезд.

— Этот поезд идет из Лондона в Брайтон, — сказал Хендерсон.

— Большая его часть, — заметил Бэнкс, — а остальная — движется по направлению к Лондону.

— О чем это, скажи на милость, ты говоришь?

— Я говорю, что если поезд идет из Лондона в Брайтон, то часть этого поезда все время движется в противоположном направлении — из Брайтона в Лондон.

— И ты всерьез утверждаешь, что, когда я еду из Кройдона в Истбурн, то часть моего велосипеда несется назад в Кройдон?

— Не горячись, старина, — сказал спокойно Бэнкс. — Я ничего не говорил о велосипедах. Мое утверждение касалось только железнодорожных поездов.

Хендерсон решил, что это просто шутка и речь идет о дыме или паре, но его приятель заметил, что сильный ветер может быть и в направлении движения поезда. Тогда он высказал предположение, что имелись в виду мысли пассажиров, но проверить этого не удалось и, кроме того, вряд ли их можно было назвать частью поезда! Наконец Хендерсон сдался.

Не смог бы читатель объяснить этот любопытный парадокс?

293. Механический парадокс.Знаменитый механический парадокс, придуманный Джеймсом Фергюсоном [17]

где-то около 1751 г., следовало бы знать каждому. Он предложил его скептику-часовщику в момент спора.

— Предположим, — сказал Фергюсон, — что я сделаю одно колесо толщиной в три других и на всех их нарежу зубцы. Затем я свободно надену три колеса на одну ось и помещу толстое колесо так, чтобы оно приводило их в движение и его зубцы входили в зубцы трех тонких колес. Если я поверну толстое колесо, то как повернутся тонкие колеса?

Часовщик ответил, что, очевидно, три колеса повернутся в противоположном направлении. Тогда Фергюсон смастерил простой механизм, который под силу сделать каждому, и показал, что при вращении толстого колеса в любом направлении одно из тонких колес вращается в том же самом направлении, другое — в противоположном, а третье остается неподвижным. Хотя часовщик и взял механизм домой, он так и не смог найти объяснение этому странному парадоксу.

294. Четыре домовладельца.Вы видите на рисунке квадратный участок земли с четырьмя домами, четырьмя деревьями, колодцем (

W) в центре, а также изгородями с четырьмя калитками ( G).

Можете ли вы разделить этот участок так, чтобы каждому домовладельцу досталось поровну земли, по одному дереву, по одной калитке, по куску изгороди равной длины и по свободному проходу к колодцу, который не пересекал бы участок соседа?

295. Пять заборов.У одного человека было большое квадратное огороженное поле, на котором росло 16 дубов (см. рисунок). Владелец из каких-то эксцентричных соображений пожелал поставить на нем 5 прямых заборов таким образом, чтобы каждое дерево оказалось на отдельном участке.

Как он сможет это сделать? Возьмите карандаш и перечеркните поле пятью прямыми так, чтобы каждое дерево было отделено от всех остальных.

296. Сыновья фермера.

У одного фермера был квадратный участок земли, на котором росли 24 дерева. В своем завещании он пожелал, чтобы каждый из его восьми сыновей получил одинаковое количество земли и равное число деревьев.

Как наипростейшим образом разделить землю?

297. Минуя мины.Перед нами небольшой заминированный участок моря. Крейсер, благополучно минуя мины, прошел его с юга на север двумя прямыми курсами.

Проведите от нижнего края до любой точки на карте прямую линию, а затем от этой точки до верхнего края карты еще одну прямую, проложив путь между минами.

298. Шесть прямых заборов.У одного человека была небольшая плантация, состоявшая из 36 деревьев, посаженных в виде квадрата. Часть из них засохла (на рисунке засохшие деревья изображены точками) и должна быть спилена.

Как можно поставить 6 прямых заборов, чтобы каждое из оставшихся 20 деревьев оказалось отгороженным от остальных? Кстати говоря, подобным образом можно было бы разгородить шестью прямыми заборами 22 дерева, если бы они были расположены поудобнее, но нам приходится иметь дело с деревьями, посаженными регулярным образом, и в этом вся разница.

Возьмите карандаш и подумайте, сумеете ли вы провести 6 прямых так, чтобы каждое дерево оказалось отгороженным от остальных.

299. Разрезание полумесяца.На какое максимальное число частей можно разрезать пятью прямыми разрезами полумесяц? Куски полумесяца нельзя ни складывать стопкой, ни передвигать.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика