Читаем Пятьсот двадцать головоломок полностью

351. Испорченный ковер.У одной леди был дорогой персидский ковер размером 12 x 9 м, который сильно пострадал от пожара. Поэтому ей пришлось вырезать в середине ковра дыру размером 8 x 1 м (см. рисунок), а затем оставшуюся часть разрезать на два куска, из которых она сшила квадратный ковер размером 10 x 10 м.

Как ей это удалось сделать? Разумеется, припуски на швы оставлять не следует.

352. Как сложить шестиугольник?Головоломки, в которых требуется что-либо сложить из бумаги, одновременно и интересны и поучительны. Я имею в виду не всевозможные коробочки, кораблики и лягушки, сложенные из бумаги, поскольку это скорее игрушки, чем головоломки, а решение некоторых геометрических задач, так сказать, «голыми руками».

Приведу один сравнительно простой пример. Допустим, что у вас есть квадратный лист бумаги. Как его следует согнуть, чтобы сгибы очертили правильный шестиугольник (см. рисунок)? Разумеется, вы не должны прибегать ни к карандашу, ни к линейке, ни к другим подобным инструментам. Шестиугольник может располагаться внутри квадрата произвольно.

353. Как сложить пятиугольник?

Вот еще одна головоломка на складывание, значительно более трудная, чем предыдущая задача с шестиугольником. Если у вас имеется квадратный лист бумаги, то как следует его согнуть, чтобы сгибы образовали правильный пятиугольник (см. рисунок)? Сделать это вы должны «голыми руками», не прибегая к измерениям и инструментам.

354. Как сложить восьмиугольник?Сумеете ли вы из квадратного листа бумаги вырезать правильный восьмиугольник (см. рисунок) с помощью одних только ножниц, не пользуясь циркулем и линейкой? Разрешается лишь сложить предварительно лист бумаги, чтобы затем разрезать по сгибам.

355. Квадрат и треугольник.Возьмите квадратный лист бумаги и сложите его таким образом, чтобы получился наибольший из возможных равносторонний треугольник. Треугольник на рисунке, у которого все стороны равны стороне квадрата, не будет наибольшим. Разумеется, при этом производить измерения и пользоваться какими-либо инструментами не следует.

356. Пятиугольник из полоски.Изображенную на рисунке полоску бумаги произвольной длины (скажем, длина ее более чем в 4 раза превышает ширину) сложите в правильный пятиугольник так, чтобы все ее части лежали внутри заданной фигуры. Единственное условие состоит в том, что угол ABCдолжен совпадать с внутренним углом правильного пятиугольника.

357. Задача о кратчайшем сгибе.

Перегните страницу так, чтобы нижний внешний угол коснулся внутреннего края, а сгиб оказался бы наикратчайшим из возможных. Это, пожалуй, наиболее простой вопрос, какой только можно задать, однако многие читатели призадумаются, где именно нужно перегнуть страницу. Здесь показаны два примера сгибов такого рода. Вы видите, что сгиб АВбольше сгиба CD, но последний не самый короткий из возможных.

358. Почтовые марки.Если у вас имеется блок из восьми почтовых марок 4 x 2 (см. рисунок), то очень интересно найти различные способы сложить все марки так, чтобы они оказались под первой. Скажу сразу же, что всего существует 40 таких способов, когда первая марка обращена лицевой стороной кверху, а остальные располагаются под ней. Марки 5, 2, 7к 4

всегда будут лежать лицевой стороной вниз, но вы можете добиться того, чтобы любая марка, кроме 6, лежала непосредственно под 1, хотя существует только по два способа расположить так марки 7и 8. Пользуясь одним небольшим открытым мной законом, я пришел к убеждению, что марки можно сложить в порядке 1, 5, 6, 4, 8, 7, 3, 2
и 1, 3, 7, 5, 6, 8, 4, 2с первой маркой, расположенной лицевой стороной кверху; однако мне пришлось поломать голову, прежде чем удалось осуществить это на практике.

Сумеет ли читатель сложить марки таким образом, не разрывая, конечно, перфорации? Попробуйте это сделать с листком бумаги, на котором марки отмечены сгибами, а номера для удобства поставлены с обеих сторон. Это очень интересная задача. Не откладывайте ее в сторону, считая неразрешимой!

359. Упрощенный солитер.Вот один упрощенный вариант старинной игры солитер, который поможет во многих случаях приятно провести досуг.

Нарисуйте на листе бумаги или картона простую диаграмму и разместите на ней 16 пронумерованных фишек так, как показано на рисунке. Одна фишка может перепрыгивать через другую на свободный квадрат, расположенный сразу за этой последней, причем та, через которую перепрыгнули, удаляется. Однако перепрыгивать по диагонали запрещено.

Задача заключается в том, чтобы, последовательно совершая «прыжки», удалить все фишки, кроме одной.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика