Читаем Пятьсот двадцать головоломок полностью

9. Абрахам ( А) должен получить треть всей суммы, а Бенджамин ( Б) — две трети. Пусть, например, Бможет выкопать канаву за 2 ч и выбросить весь грунт за 4 ч. Тогда Авыкапывает канаву за 4 ч и выбрасывает весь грунт за 8 ч. Следовательно, при рытье канавы их силы относятся, как 2 к 4, а при выбрасывании грунта — как 4 к 8 (то есть отношение сил остается неизменным). При этом Аможет выкопать канаву за то же время, за которое Бможет выбросить весь грунт (4 ч), а Бможет выкопать канаву за четвертую часть того времени, которое Атратит на выбрасывание грунта. Любые другие конкретные числа, удовлетворяющие условиям задачи, приведут к двум аналогичным отношениям сил обоих землекопов. Следовательно, Абрахаму причитается треть всей суммы, а Бенджамину — в два раза больше, то есть две трети.

10. Кэтрин, Джейн и Мери получили соответственно 122, 132 и 142 доллара, что как раз вместе и составляет общую сумму их доли наследства 396 долларов. По условию задачи Джон Смит получает столько же, сколько и его жена Кэтрин (122 доллара), Генри Снукс — в полтора раза больше своей жены Джейн (198 долларов), а Том Кроу — в два раза больше своей жены Мери (284 доллара), поэтому общая сумма наследства равна 1000 долларов. Следовательно, имена жен указаны верно.

11. Фермер купил 19 коров за 950 долларов, 1 овцу за 10 долларов и 80 кроликов за 40 долларов, что составляет в совокупности 100 голов общей стоимостью в 1000 долларов. Арифметически задачу нетрудно решить с помощью метода средних: средняя стоимость одной головы скота та же, что и стоимость одной овцы.

Алгебраически задачу можно решить следующим образом. Поскольку x+ y+ z= 100, то 1/2 x+ 1/2

y+ 1/2 z= 50.

50 x+ 10 y+ 1/2 z=1000
-
1/2 x+ 1/2 y
+ 1/2 z
=50
49 1/2 + 9 1/2 y=950

(цены даются в долларах), или 99 x+ 19 y= 1900. Итак, задача сводится к решению неопределенного уравнения. Единственный [28]набор xи y, удовлетворяющий этому уравнению, имеет вид x= 19, y= 1. Чтобы общее число голов равнялось 100,

zдолжно быть равно 80.

12. Все семь торговок продавали яблоки по 1 центу за 7 штук: в тех случаях, когда оставшихся яблок оказывалось менее семи, их придавали по 3 цента за штуку. Таким образом, каждая торговка выручила по 20 центов. Не оспаривая ни в коей мере остроумия этой задачи, я всегда считал ее решение неудовлетворительным из-за его неопределенности, даже если допустить, что при таком эксцентричном способе торговли можно в полном смысле слова говорить о единой «цене» на яблоки. С тем же успехом мы могли бы считать, что торговки продают яблоки по одной цене, но с разными скидками; продают яблоки разных сортов по разным ценам; продают по одной цене за корзину, продают на вес, в то время как яблоки имеют разную величину, сбавляют цену с менее свежих яблок и т. д.

В общем случае можно сказать, что п торговок, у которых имеется соответственно na+ ( n- 1), n( a+ b) + ( n- 2), n( a+ 2 b) + ( n- 3), ..., n[ a+ b

( n- 1)] яблок, могут продавать их кучками по nштук на 1 цент, а оставшиеся яблоки — по bцентов за штуку, причем каждая из торговок получит выручку в a+ b( n- 1) центов. В случае нашей задачи a= 2, b= 3, n= 7.

13. Старший сын получил в наследство 55 долларов, средний — 275, младший — 385 и госпиталю была завещана сумма 605 долларов, что вместе составляет 1320 долларов.

14. В наследство оставлено 1464 доллара (немного меньше чем 1500). Доли каждого из пяти детей равны соответственно 1296, 72, 38, 34 и 18 долларам. Гонорар нотариуса составляет 6 долларов.

15. Доли Альфреда и Бенджамина равны соответственно 24 и 76 долларам. Действительно, если 8 (одна треть от 24) вычесть из 19 (одна четверть от 76), то останется 11.

16. Сумма 2500 долларов, которую внес в дело Роджерс, очевидно, составляет третью часть всего капитала, который, таким образом, до его вступления в долю равнялся 7500 долларам. Следовательно, пай Смага составлял 4500 долларов (в 1 1/2 раза больше, чем пай Вильямсона), а пай Вильямсона — 3000 долларов. Поскольку их паи должны стать одинаковыми, Смаг получит из взноса Роджерса 2000 долларов, а Вильямсон — 500 долларов.

17. У Томкинса, когда он вышел из дому, было с собой 2 доллара 10 центов.

18. Наименьшая сумма (в центах), которая могла быть у одного из участников вечера, должна на единицу превышать число участников. Суммы, принадлежащие остальным участникам, можно найти последовательным удвоением и вычитанием 1. Следовательно, мы получим 10, 19, 37, 73, 145, 289, 577, 1153 и 2305 центов. Пусть тот, у кого больше всего денег, начинает первым. Тогда в конце у каждого участника останется по 2 9(512) центов, то есть по 5 долларов 12 центов.

19. Продавец при каждом снижении сбавлял цену на 3/8 стоимости мотоцикла. Следовательно, при очередном снижении он предложит цену 156 долларов 25 центов.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика