Читаем Пятьсот двадцать головоломок полностью

Сложить 42 рациона в 10 милях от базы, вернуться на базу (42 дня). Отнести 1 рацион на отметку 15 миль, вернуться к первому складу в 10 милях от базы (1 день). Оставить 20 рационов в 20 милях от базы и вернуться к складу, расположенному в 10 милях от базы (20 дней). Отнести 1 рацион на расстояние 20 миль от базы и вернуться в точку, отстоящую на 15 миль от базы, взять ранее оставленный там 1 рацион и перенести его к отметке 20 миль (1 день). Перенести 10 рационов в точку, отстоящую на 30 миль от базы, и вернуться к отметке 20 миль (10 дней). Отнести 1 рацион к отметке 35 миль и вернуться к отметке 30 миль (1 день). Отнести 4 рациона на отметку 40 миль и вернуться к отметке 30 миль (4 дня). Отнести 1 рацион к отметке 40 миль и вернуться к отметке 35 миль. Взять там 1 рацион и перенести его к отметке 40 миль (1 день). Отнести 2 рациона в точку, отстоящую на 50 миль от базы, и вернуться к отметке 40 миль (2 дня). Отнести 1 рацион к отметке 55 миль и вернуться к отметке 50 миль (1 день). Перенести 1 рацион к отметке 60 миль и вернуться к отметке 55 миль. Взять там 1 рацион и перенести его на отметку 60 миль (1 день). Совершить оттуда переход до конечного пункта маршрута (2 дня). Всего — 86 дней.

77. Если человек, выйдя из A, пройдет 1 2/3 км со скоростью 5 км/ч, то на это он затратит 20 мин. Обратный путь со скоростью 4 км/ч займет у приятелей 25 мин. Таким образом, человек догонит приятеля-инвалида в 12.35. Последний к тому времени проедет 2/3 км за 35 мин со скоростью 1 км/ч.

78. Предположим, что поезд идет в течение часа и имеет невероятную длину 3 км. Тогда (см. рисунок) за это время он пройдет от Bдо C60 км, а пассажир переместится от Aдо

C, или на 63 км. С другой стороны, если бы пассажир шел от паровоза в хвост поезда, то поезд успел бы пройти расстояние от Bдо C(снова 60 км), в то время как пассажир переместился бы лишь на расстояние от Bдо C, то есть на 57 км. Следовательно,в первом случае скорость пассажира относительно железнодорожного полотна составляет 63, а во втором — 57 км/ч [32].

79. Поскольку поезд идет 5 ч, разделим путь на 5 равных интервалов. Когда леди выезжает из Вюрцльтауна, 4 встречных поезда уже находятся в пути, а пятый лишь отправляется со станции. Каждый из этих 5 поездов она встретит. Когда леди проедет 1/5 пути, из Мадвилля отправится новый встречный поезд, когда она проедет 2/5 пути — еще один, 3/5  — еще один, 4/5  — еще один и, наконец, когда она прибудет в Мадвилль, оттуда как раз будет отправляться очередной, пятый, поезд. Если мы примем, как и следует сделать, что она не встречает «по пути» ни этот последний поезд, ни тот, который прибыл в Вюрцльтаун, когда ее поезд отправлялся оттуда, то по дороге из Вюрцльтауна в Мадвилль леди повстречает 9 поездов.

80. Слуга должен нести чемодан 1 1/3 км и передать его джентльмену, который донесет чемодан до станции. Садовник должен нести другой чемодан 2 2/3 км, а потом отдать его слуге, который и донесет чемодан до станции. Таким образом, каждый из них пронесет один чемодан 2 2/3 км — иначе говоря, труд, который затратят на переноску багажа джентльмен, слуга и садовник, будет одинаковым.

81. Пусть n — число ступенек эскалатора; время, которое требуется, чтобы одна ступенька исчезла внизу, примем за единицу.

Тротмен проходит 75 ступенек за n- 75 единиц времени, или со скоростью 3 ступеньки за ( n- 75)/25 единиц, времени. Следовательно, Уокер проходит 1 ступеньку за ( n- 75)/25 единиц времени. Но он же проходит и 50 ступенек за n- 50 единиц времени, или 1 ступеньку за (

n- 50)/50 единиц времени. Следовательно, ( n- 50)/50 = ( n- 75)/25, откуда n= 100.

82. Путешествие длилось 10 ч. Аткинс прошел пешком 5 км; Браун — 13 км, а ослик, принадлежавший Крэнби, пробежал в общей сложности 80 км. Надеюсь, ослику после такого подвига дали хорошенько отдохнуть.

83. Велосипедисты A, B

, C, Dмогут проехать один километр соответственно за 1/6 , , и ч. Следовательно, они совершают полный круг за , , и ч и, таким образом, в первый раз встречаются через ч (или, что то же, через 6 2/3 мин). Четыре раза по 6 2/3 мин составит 26 2/3 мин. Поэтому четвертая встреча всех четырех велосипедистов произойдет в 12 ч 26 мин 40 с.

84. Брукс догонит Картера через 6 2/3 мин.

85. 1) Муха встретит Bв 1 ч 48 мин.

2) Определять расстояние, которое пролетит муха, не нужно. Это слишком трудная задача. Зато можно просто найти время, когда бы могли столкнуться автомобили, — 2 ч. На самом деле муха пролетает (в километрах):

сумма этой бесконечно убывающей геометрической прогрессии равна 300 км.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика