Читаем Пятьсот двадцать головоломок полностью

260. Многоугольник с произвольным числом сторон можно свести к равновеликому треугольнику, а поскольку угол AGFоказался прямым, то сделать это очень легко. Продолжим отрезок GA. Приложим линейку к точкам Aи C, параллельно перенесем ее вверх до точки Bи отметим точку 1. Затем соединим отрезком прямой точки 1 и Dи параллельно перенесем его вверх до точки C, отметив точку 2. Теперь приложим линейку к точкам 2 и E, параллельно перенесем ее до точки Dи отметим точку 3. Далее соединим линейкой точки 3 и F, параллельно перенесем ее до E, отметив точку 4. Если теперь мы соединим прямой точки 4 и Fто получим треугольник G4 F, площадь которого равна площади нашего неправильного поля. Поскольку на карте GFравно 7 см (70 м), то отрезок G4 равен 6 см (60 м) и площадь поля равна 1/2 (70 x 60), или 2100 м

2. Этот простой и ценный способ определения площади многоугольников следовало бы знать каждому, но, увы, пока это остается лишь благим пожеланием.

261. Все размеры приведены на рисунке. Обычно для того, чтобы найти решение, приходится решать биквадратное уравнение, но поскольку в условии задачи сказано, что ответ должен быть «в целых метрах», то можно заметить, что число 91 2представимо в виде суммы квадратов единственным образом: 91 2= 84 2+ 35 2. Зная это, определить все размеры очень легко. Искомое расстояние равно 35 м.

262. Соединим прямой точки Aи D(см. рисунок) и построим отрезок CE, перпендикулярный и равный отрезку AD. Тогда точка Eсовпадет с центром одного из квадратов. Проведем прямую EBи продолжим ее в обе стороны. Проведем также через Cпрямую FGпараллельно EB, а через Aи D — перпендикуляры к EB

и FG. Поскольку Н есть центр углового квадрата, то, приняв отрезок HEза единицу длины, мы обнаружим, что доска имеет размеры 10 x 10.

Если бы не были даны размеры шашек, то мы могли бы разбить доску на более мелкие квадраты. Но поскольку размеры шашек видны из рисунка, дальнейшее разбиение доски невозможно: в более мелких квадратах наши шашки просто не уместятся. Так как расстояние между центрами квадратов равно стороне квадрата, мы легко можем восстановить всю доску, что и показано на рисунке.

263. На рисунке слева показано чрезвычайно простое решение данной головоломки. Звездочка в центре — это офицер, а точки — солдаты.

264. На рисунке справа изображена симметричная звезда в том самом положении, которое она занимает на скатерти. Все другие лоскутки для большей ясности не показаны. Удивительно, как трудно обнаружить звезду до тех пор, пока вам ее однажды не покажут. После эго решение становится совершенно очевидным.

265. Данную трапецию можно вписать в окружность. Полусумма xсторон равна 29. Вычитая из этого числа по очереди все стороны, мы получим 9, 13, 17, 19. Произведение этих чисел равно 37  791. Квадратный корень из полученного числа равен 194,4, что и совпадает с размером искомой площади.

266. Продолжив приведенную ниже таблицу, вы сможете получить сколько угодно рациональных треугольников нужного вида.

PQВысотаПлощадь
2436
8141284
3052451170
11219416816 296
418724627226 974
1560270223403 161 340

Числа в таблице удовлетворяют соотношению 3 P 2+ 4 = Q 2. Каждое следующее значение P(начиная с третьего сверху) можно найти, умножив текущее значение Pна 4, после чего следует вычесть из полученного произведения предыдущее значение P. Аналогично вычисляются и значения Q(начиная с четвертого сверху). Высота треугольника равна P/2, площадь — произведению высоты на Q/2. Длина средней из трех сторон всегда оказывается равной Q. В последней строке таблицы приведено наименьшее значение площади, делящееся на 20. Стороны треугольника в этом случае равны 2701, 2702, 2703, его высота 2340.

267. На приведенном здесь рисунке показано, как можно разделить окно на восемь просветов, «у которых все стороны тоже были бы равны». Каждый отрезок прута имеет равную длину.

Подразумевалось (хотя явно и не оговаривалось), что площади всех просветов должны быть равными, а в нашем случае площадь каждого из четырех неправильных просветов на 1/4 больше площади квадратного просвета и ни форма, ни число сторон у них не совпадают. И все же это решение точно удовлетворяет поставленным условиям. Если бы из каждой головоломки пришлось удалить все, что допускает неоднозначное толкование, то она оказалась бы перегруженной всевозможными условиями. Лучше оставить кое-что недоговоренным (разумеется, если речь идет не об олимпиадных задачах).

268. На рисунке пунктиром изображено первоначальное окно размером 1 м 2. После того как владелец загородил четыре угла, у него осталось квадратное окно вдвое меньшей площади, но в метр шириной и метр высотой.

269. Доску следует разрезать на расстоянии от В, равном 60 - 120 = 79,732 ...

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика