Читаем Почему мы не проваливаемся сквозь пол полностью

Вторая причина связана с тем, что перераспределение напряжений в конструкции может сгладить опасные напряжения. Дело в том, что иногда бывает очень трудным сколько-нибудь точно определить нагрузки во всех элементах сложной конструкции, а кое-кому это может показаться просто слишком обременительным занятием. Если же материал течет и имеет большой пластический участок, то перегруженный элемент может просто больше деформироваться, что не так уж и опасно для него. Многие инженеры свято верят в такие “самопроектирующиеся” конструкции.

Теперь нам понятны преимущества пластичных металлов в реальном мире с его несовершенствами и соображениями коммерции. Легко объясняется теперь и широчайшее распространение мягких сталей, алюминия, меди. Но вместе с тем с пластичностью связаны и два недостатка. Пластичность даже самых мягких металлов не бесконечна, и так как способов измерить, какая доля пластичности уже исчерпана при изготовлении детали, обычно нет, остается лишь догадываться, сколько же пластичности сохранилось на то, чтобы обеспечивать вязкость в ходе эксплуатации. Когда ломаются изделия массового производства, именно в этом незнании кроется корень зла. Отжиг - операция достаточно прихотливая, к тому же она связана с дополнительными расходами, а малые детальки имеют грошовую цену, поэтому трудно воспротивиться стремлению деформировать металл в таких случаях вхолодную.

Другой недостаток заключается в том, что максимальная пластичность неизбежно сочетается с малой прочностью, поскольку металловеды должны сделать так, чтобы дислокации начали двигаться при малых напряжениях. А в итоге конструкции часто получаются намного тяжелее, чем следовало бы.

(обратно)

Краевые и винтовые дислокации

Теория дислокаций чрезвычайно сложна и в конце-то концов наибольший интерес она представляет, по-видимому, для узких специалистов. Однако нам следует упомянуть о двух основных типах дислокаций - краевой и винтовой. Краевая дислокация была введена в обиход Дж. Тэйлором в 1934 году. Она проще и легче для понимания. Как мы уже говорили о ней в главе 3 (рис. 28), она создана, по существу, лишним слоем атомов, вдвинутым в кристалл словно лист бумаги, наполовину вложенный между страницами книги. Краевые дислокации могут возникнуть в процессе образования кристалла. Примером их могут служить так называемые “малоугловые границы”: когда два растущих кристалла встречаются под небольшим углом и соединяются вместе, образуя сплошное тело, линия их соединения оказывается цепочкой краевых дислокаций, которые впоследствии могут, конечно, перебраться на новые места.

Существование винтовых дислокаций предсказал в 1948 году Франк. Они понадобились ему не столько для объяснения механических свойств кристаллов, сколько для объяснения их роста. Переход атомов или молекул из раствора или из пара и более или менее непрерывное осаждение их на растущем твердом кристалле сопровождается изменением энергии системы. Пойдет или не пойдет такой процесс - зависит от так называемого пересыщения, грубо говоря, от того насколько охотно молекулы покидают раствор или пар. Можно, например охладить раствор сахара или соли значительно ниже температуры, при которой должны расти кристаллы, а кристаллы не появятся, пока не окажется для них подходящей поверхности.

Для гладкой плоской поверхности можно вычислить степень пересыщения, которой можно достичь без выпадения материала. Она оказывается довольно большой. Франка занимало, что на практике многие кристаллы растут себе на здоровье при пересыщениях, которые намного меньше теоретически рассчитанных для присоединения атомов к плоской поверхности. И в самом деле, если бы нам всегда пришлось осаждать кристаллы только на плоскую поверхность, многие кристаллы вряд ли вообще были бы получены. Но можно показать, что если поверхность имеет нерегулярность, неровность, такую, как, например, ступенька высотою хотя бы в одну молекулу, - осаждение будет намного легче.

Ступенька дает довольно уютное пристанище блуждающим молекулам, которые стремятся осесть именно здесь. Так и каменщик кладет кирпичи на уступе кладки. И точно так же, как и в случае кирпичной кладки, добавив один элементик, мы не уничтожим ступеньку, а лишь переместим ее вдоль верхушки стены. Этот механизм в действии наблюдали Банн и Эммет в 1946 году. Напомним, что именно так получаются ступеньки, которые ослабляют поверхность усов и других кристаллов (глава 3).

Франк рассуждал примерно так. Допустим, что ступеньки роста существуют. Что же тогда получается, когда движущаяся ступенька доходит до кромки кристалла? По-видимому, она должна исчезнуть, как исчезает уступ на кирпичной стене, когда каменщик достигает конца стены. Если так, то как могла бы возродиться ступенька, чтобы начал расти следующий слой?

Перейти на страницу:

Похожие книги

MMIX - Год Быка
MMIX - Год Быка

Новое историко-психологическое и литературно-философское исследование символики главной книги Михаила Афанасьевича Булгакова позволило выявить, как минимум, пять сквозных слоев скрытого подтекста, не считая оригинальной историософской модели и девяти ключей-методов, зашифрованных Автором в Романе «Мастер и Маргарита».Выявленная взаимосвязь образов, сюжета, символики и идей Романа с книгами Нового Завета и историей рождения христианства настолько глубоки и масштабны, что речь фактически идёт о новом открытии Романа не только для литературоведения, но и для современной философии.Впервые исследование было опубликовано как электронная рукопись в блоге, «живом журнале»: http://oohoo.livejournal.com/, что определило особенности стиля книги.(с) Р.Романов, 2008-2009

Роман Романов , Роман Романович Романов

История / Литературоведение / Политика / Философия / Прочая научная литература / Психология
Никола Тесла — повелитель молний. Научное расследование удивительных фактов
Никола Тесла — повелитель молний. Научное расследование удивительных фактов

Что скрывается за таинственными изобретениями Николы Теслы? Как был связан великий изобретатель с загадкой исчезновения эсминца «Элдридж» в ходе филадельфийского эксперимента? Что за таинственные опыты ставили последователи Николы Теслы на заброшенной базе ВВС в Монтауке? Эти и многие другие захватывающие воображение вопросы автор рассматривает через призму самых последних достижений науки и техники. Книга написана в виде сборника популярных очерков — расследований темных пятен биографии выдающегося электротехника и изобретателя Николы Теслы.Книга предназначена для самого широкого круга читателей, интересующихся секретами военно-научных исследований.

Олег Орестович Фейгин

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
Как стать богатым и знаменитым. 12 правил НЛП
Как стать богатым и знаменитым. 12 правил НЛП

Хотите быть звездой? Считаете себя достойным славы и богатства? Не знаете, как подступиться к столь грандиозной цели? Инструкция к осуществлению вашей заветной мечты – у вас в руках.Для амбициозной цели нужны амбициозные средства. НЛП – методика прирожденного победителя. Она предназначена в первую очередь для тех, у кого поистине наполеоновские планы на жизнь. Кто готов брать от жизни все и сразу. Кто желает превратиться из обычного зрителя, безучастно наблюдающего за ходом жизни, в настоящего режиссера своей судьбы.Из этой книги вы узнаете, почему многие мечтают о славе и богатстве, но лишь единицы наслаждаются ими; как обойти любые преграды на пути к Звездному Олимпу; где искать свой «счастливый случай»; зачем нужны навыки НЛП в шоу-бизнесе. И наконец—как навсегда эмигрировать из страны ограниченных перспектив в страну безграничных возможностей.

Ева Бергер

Психология и психотерапия / Прочая научная литература / Психология / Образование и наука
Металлы и человек
Металлы и человек

Эта книга рассказывает о металлах. И о таких широкоизвестных, как железо, медь, алюминий, и о тех, даже названия которых приходилось слышать не всем: церий, гадолиний, тантал.Вы сможете прочесть здесь и о волшебных свойствах юного соперника железа — титана, и об уране — новом топливе для электростанций, и о вольфраме — самом прочном и самом тугоплавком в семействе металлов. В общем — обо всех восьмидесяти металлах, которые существуют в природе.Вместе с тем это книга и о человеке, о его великой власти над металлами. Ведь это человек превращает ржавые камни, руду в металлические изделия.Это он собрал, в иных случаях буквально по атому, первые крупинки редких и рассеянных элементов и открыл их удивительные свойства. Он облагородил металлы: сделал сталь нержавеющей, слабый алюминий — прочным, желтое золото — разнообразным по цвету. Это человек нашел металлам бесчисленное применение — для сооружений высотных зданий и газопроводов, космических ракет и вагонов метро, для сшивания кровеносных сосудов и превращения солнечных лучей в электрический ток…Книга эта рассказывает и о борьбе советского народа за металл, о наиболее прогрессивных методах получения и обработки металлов, о важности их экономии и рационального использования.Книга написана очень популярно. Она рассчитана на то, чтобы ее с пользой для себя прочитал каждый интересующийся современной наукой и техникой и перспективами их развития.

Михаил Васильевич Васильев

Металлургия / Прочая научная литература / Образование и наука