Читаем Почему мы не проваливаемся сквозь пол полностью

После того как вы увидели своими глазами броуновское движение, ваше представление о природе теплоты будет уже совсем иным. Теперь вы можете сказать, что не просто заучили какие-то объективные научные истины, а уже на ты с кинетической теорией тепла. Разница примерно такая же, как читать о заходе солнца и самому наблюдать закат.

То же самое и с дислокациями. Абстрактная теория становилась очень осязаемым явлением. Но как же увидеть дислокации? Прежде всего с помощью химического травления. Мы уже говорили, что деформированные межатомные связи более уязвимы для химических и физических воздействий, чем недеформированные. Следовательно, если протравить кристалл (обычно в кислотном растворе), то места, где дислокации выходят на поверхность, протравятся более интенсивно, чем окружающий материал. В результате на поверхности кристалла появится серия так называемых ямок травления, которые обычно легко просматриваются в оптический микроскоп. Такая техника наблюдения дислокаций очень распространена, и специалисты, наблюдая полученные путем травления оспинки, могут сделать довольно далеко идущие выводы. Одним из ухищрений здесь является раскалывание кристалла надвое. Любая дислокация, существовавшая в кристалле до начала эксперимента и проходившая через плоскость раскола, будет, конечно, одной и той же на обеих половинках. Одна из половинок выбирается как контрольная и травится немедленно, чтобы выявить исходную дислокационную картину, а другая половинка деформируется (либо с нею ставится какой-то другой эксперимент), а уж затем травится. Сравнивая картину ямок травления на двух поверхностях, можно видеть, какие из дислокаций образовались в ходе эксперимента, а какие - передвинулись.

Травление - полезный прием, но его нельзя считать способом прямого наблюдения дислокаций. Следующий шаг в этом направлении был сделан Хиршем в Кэвендишской лаборатории (Кембридж). Он использовал свойство очень тонкой металлической фольги быть практически прозрачной в электронном микроскопе, а вот любые нарушения кристаллической решетки дают темные образования. Поэтому дислокации представляются здесь темными линиями на белом фоне.

Все это хорошо, но было бы интереснее взглянуть на движущуюся дислокацию, а для этого на нее нужно воздействовать, создав какое-то напряжение. Нелегко приложить механическое напряжение непосредственно к фольге, которая настолько тонка, что становится прозрачной для электронного пучка. Поэтому Хирш использовал для нагрева фольги, расширения и, стало быть, нагружения образца энергию самого электронного пучка. Все сработало очень хорошо, и Хирш смог снять кинофильм о дислокациях в движении. Фильм получился очень впечатляющим. Дислокации являли собой таинственную картину суетящихся мышей.

Опыты Хирша, однако, не преследовали цель увидеть индивидуальные атомы или трехмерную шахматную доску кристаллической решетки. Дислокации у Хирша были всего лишь черными линиями деформации на белом или сером фоне. Но, как мне кажется, чего мы действительно хотим, так это увидеть слой атомов, обрывающийся где-то в кристаллической решетке. Однако, прежде чем увидеть дислокацию в кристаллической решетке, нужно бы увидеть … саму решетку. В металлах и в большинстве обычных кристаллов параметр решетки близок к 2 А. А в те времена, о которых я сейчас говорю (середина 50-х годов), самое лучшее разрешение электронного микроскопа было около 10 А. Стало быть, не было никакой надежды увидеть атомные слои обычными средствами. Эту трудность первым преодолел Джим Ментер, работавший в Хинкстон Холле близ Кембриджа. Он приготовил тонкие кристаллики вещества, называемого фталоцианином платины. Молекула этого органического соединения - плоская, примерно квадратная, около 12 А в поперечнике. В середине квадрата - дырка, а в этой дырке в случае фталоцианина платины - атом платины. В кристалле эти плоские молекулы упаковываются так, что расстояние между слоями молекул оказывается 12 А, и центре каждого ряда молекул проходит линия тяжелых атомов платины, стоящих особняком от легких атомов панической молекулы. Таким образом получаются линии платиновых атомов в регулярном кристаллическом расположении, расстояние между которыми 12 А вместо обычных 2 А. Органическую часть молекулы можно считать прозрачной набивкой, которая держит на нужном расстоянии плотные, с неясными очертаниями атомы платины.

Настраивая микроскоп на максимальное разрешение, можно было увидеть решетку этого кристалла. Пожалуй, она была похожа на нарисованные угольком слегка лохматые полосы на более светлом сероватом фоне - что-то вроде строк на телевизионном экране. Бросалась в глаза невероятная регулярность кристалла. При большом, увеличении бесчисленные рыхловатые полоски тянулись идеально прямо. Конца им, казалось, нет. Число слоев было огромным. Миллионы миллионов молекул, каждая точно на своем месте.

Перейти на страницу:

Похожие книги

MMIX - Год Быка
MMIX - Год Быка

Новое историко-психологическое и литературно-философское исследование символики главной книги Михаила Афанасьевича Булгакова позволило выявить, как минимум, пять сквозных слоев скрытого подтекста, не считая оригинальной историософской модели и девяти ключей-методов, зашифрованных Автором в Романе «Мастер и Маргарита».Выявленная взаимосвязь образов, сюжета, символики и идей Романа с книгами Нового Завета и историей рождения христианства настолько глубоки и масштабны, что речь фактически идёт о новом открытии Романа не только для литературоведения, но и для современной философии.Впервые исследование было опубликовано как электронная рукопись в блоге, «живом журнале»: http://oohoo.livejournal.com/, что определило особенности стиля книги.(с) Р.Романов, 2008-2009

Роман Романов , Роман Романович Романов

История / Литературоведение / Политика / Философия / Прочая научная литература / Психология
Никола Тесла — повелитель молний. Научное расследование удивительных фактов
Никола Тесла — повелитель молний. Научное расследование удивительных фактов

Что скрывается за таинственными изобретениями Николы Теслы? Как был связан великий изобретатель с загадкой исчезновения эсминца «Элдридж» в ходе филадельфийского эксперимента? Что за таинственные опыты ставили последователи Николы Теслы на заброшенной базе ВВС в Монтауке? Эти и многие другие захватывающие воображение вопросы автор рассматривает через призму самых последних достижений науки и техники. Книга написана в виде сборника популярных очерков — расследований темных пятен биографии выдающегося электротехника и изобретателя Николы Теслы.Книга предназначена для самого широкого круга читателей, интересующихся секретами военно-научных исследований.

Олег Орестович Фейгин

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
Как стать богатым и знаменитым. 12 правил НЛП
Как стать богатым и знаменитым. 12 правил НЛП

Хотите быть звездой? Считаете себя достойным славы и богатства? Не знаете, как подступиться к столь грандиозной цели? Инструкция к осуществлению вашей заветной мечты – у вас в руках.Для амбициозной цели нужны амбициозные средства. НЛП – методика прирожденного победителя. Она предназначена в первую очередь для тех, у кого поистине наполеоновские планы на жизнь. Кто готов брать от жизни все и сразу. Кто желает превратиться из обычного зрителя, безучастно наблюдающего за ходом жизни, в настоящего режиссера своей судьбы.Из этой книги вы узнаете, почему многие мечтают о славе и богатстве, но лишь единицы наслаждаются ими; как обойти любые преграды на пути к Звездному Олимпу; где искать свой «счастливый случай»; зачем нужны навыки НЛП в шоу-бизнесе. И наконец—как навсегда эмигрировать из страны ограниченных перспектив в страну безграничных возможностей.

Ева Бергер

Психология и психотерапия / Прочая научная литература / Психология / Образование и наука
Металлы и человек
Металлы и человек

Эта книга рассказывает о металлах. И о таких широкоизвестных, как железо, медь, алюминий, и о тех, даже названия которых приходилось слышать не всем: церий, гадолиний, тантал.Вы сможете прочесть здесь и о волшебных свойствах юного соперника железа — титана, и об уране — новом топливе для электростанций, и о вольфраме — самом прочном и самом тугоплавком в семействе металлов. В общем — обо всех восьмидесяти металлах, которые существуют в природе.Вместе с тем это книга и о человеке, о его великой власти над металлами. Ведь это человек превращает ржавые камни, руду в металлические изделия.Это он собрал, в иных случаях буквально по атому, первые крупинки редких и рассеянных элементов и открыл их удивительные свойства. Он облагородил металлы: сделал сталь нержавеющей, слабый алюминий — прочным, желтое золото — разнообразным по цвету. Это человек нашел металлам бесчисленное применение — для сооружений высотных зданий и газопроводов, космических ракет и вагонов метро, для сшивания кровеносных сосудов и превращения солнечных лучей в электрический ток…Книга эта рассказывает и о борьбе советского народа за металл, о наиболее прогрессивных методах получения и обработки металлов, о важности их экономии и рационального использования.Книга написана очень популярно. Она рассчитана на то, чтобы ее с пользой для себя прочитал каждый интересующийся современной наукой и техникой и перспективами их развития.

Михаил Васильевич Васильев

Металлургия / Прочая научная литература / Образование и наука