Читаем Почему мы существуем? Величайшая из когда-либо рассказанных историй полностью

Французский математик Пьер де Ферма предложил в 1650 г. другой способ осмысления этого явления. Свет движется быстрее в теплом, менее плотном воздухе, нежели в холодном. Поскольку теплее всего воздух у поверхности, свету требуется меньше времени, чтобы попасть в ваш глаз по траектории, проходящей вдоль поверхности, чем напрямую. Ферма сформулировал принцип, получивший название принципа наименьшего времени, который гласит: чтобы определить итоговую траекторию любого светового луча, нужно просто проверить все возможные пути из точки A в точку B и найти тот из них, что требует наименьшего времени.

Формулировка звучит так, будто свет обладает собственной волей. Я с трудом удержался и не сказал, что свет рассматривает все возможные пути и выбирает тот из них, который требует наименьшего времени, поскольку уверен, что Дипак Чопра тут же процитировал бы меня и заявил, что я наделяю свет сознанием. Свет не имеет сознания, но математический результат выглядит так, будто свет выбирает самый быстрый путь.

А теперь вспомните, что в квантовой механике световые лучи и электроны движутся вовсе не по единственной траектории от точки к точке, а по всем возможным траекториям одновременно. Каждая траектория имеет определенную вероятность быть измеренной, но классическая, занимающая минимум времени траектория имеет самую большую вероятность из всех.

В 1939 г. Дирак предложил способ расчета всех таких вероятностей и их суммирования для определения квантово-механических шансов на то, что частица, вылетающая из точки A, в конечном итоге окажется в точке B. Ричард Фейнман, в то время студент-старшекурсник, услышав о статье Дирака на пивной вечеринке, математически вывел конкретный пример, на котором продемонстрировал, что эта идея работает. Взяв посыл Дирака в качестве стартового момента, Фейнман получил результаты, идентичные тому, что можно было получить с использованием подходов Шрёдингера и Гейзенберга, по крайней мере в простых случаях. Что еще важнее, Фейнман теперь мог использовать новую формулу «суммирования по траекториям» в применении к тем квантовым системам, которые невозможно легко описать или проанализировать другими методами.

В итоге Фейнман доработал свой математический метод, чтобы развить релятивистское уравнение Дирака для квантового поведения электронов до полностью непротиворечивой квантово-механической теории взаимодействия между электронами и светом. За эту работу, положившую начало теории квантовой электродинамики (КЭД), в 1965 г. он был удостоен Нобелевской премии, которую разделил с Джулианом Швингером и Синъитиро Томонагой.

Однако еще до завершения этой работы Фейнман описал интуитивную физическую причину, по которой теория относительности в сочетании с квантовой механикой непременно требует существования античастиц.

Рассмотрим электрон, движущийся вдоль некоторой возможной «квантовой» траектории. Что это означает? До тех пор пока я не пытаюсь измерить положение или скорость электрона в процессе его движения, он движется одновременно по всем возможным траекториям между двумя точками. Среди этих траекторий есть и неразрешенные в классической физике, поскольку при движении по ним нарушались бы такие принципы, как, например, запрет превышения скорости света, вытекающий из теории относительности. С другой стороны, принцип неопределенности Гейзенберга гласит, что, даже если я попытаюсь измерить характеристики электрона во время его движения на каком-то небольшом промежутке времени, его скорости все же останется присуща некоторая неопределенность, избавиться от которой невозможно. Так что даже если я буду измерять траекторию электрона в различных точках, я не смогу исключить возможность его странного неклассического поведения в промежутках. Представьте, к примеру, следующую траекторию.



В течение короткого времени в середине изображенного периода электрон движется быстрее света.

Но Эйнштейн говорит нам, что время относительно, и разные наблюдатели измерят разные промежутки времени между событиями. А если какая-то частица движется быстрее света в одной системе отсчета, то в другой системе отсчета наблюдателю покажется, что она движется назад во времени, как изображено на следующем рисунке (это одна из причин, почему теория относительности ограничивает скоростью света движение всех наблюдаемых частиц).



Фейнман понял, что во второй системе отсчета это выглядело бы как электрон, который некоторое небольшое время движется вперед во времени, затем движется назад во времени, затем снова движется вперед. Но как выглядит электрон, который движется назад во времени? Поскольку электрон – отрицательно заряженная частица, отрицательный заряд, движущийся назад во времени слева направо, эквивалентен положительному заряду, движущемуся вперед во времени справа налево. Таким образом, наша схема эквивалентна следующей картине.



Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Тринадцать вещей, в которых нет ни малейшего смысла
Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».

Майкл Брукс

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука / Документальное
Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература