В 1972–1978 гг. в Харькове на системе МАРС были проведены измерения численности метеоров, скорости метеоров, индивидуальных радиантов. На статистическом анализаторе численности метеорных отражений (САЧМО) на втором уровне чувствительности за указанные годы было зарегистрировано более 20 млн метеоров. Получено более 250 тысяч орбит метеорных тел, выявлено 2405 гиперболических орбит. Детально исследовался вопрос о существовании метеорных тел с гиперболическими орбитами. Это могут быть межзвездные частицы, тела, рожденные в Солнечной системе, или ошибки наблюдений. В харьковских данных количество таких орбит составляет 1–2 % от общего числа и не может быть объяснено только ошибками измерений.
На основе длительных рядов экспериментальных наблюдений метеоров с января 1974 г. по декабрь 1978 г. в Харькове создана компьютерная база данных параметров радиометеорных регистраций, не имеющая аналогов в мире по количеству собранного материала (приблизительно 200 тыс. пакетов параметров индивидуальных метеоров).
Большие достижения на кафедре основ радиотехники связаны с применением современных математических моделей и новой методологии исследований, а также широкого использования ЭВМ. Поскольку при наблюдениях метеоров регистрируются не сами метеорные тела, а явления, которые они создают в атмосфере Земли, т. е. световое излучение при оптических наблюдениях и ионизированный след при радиолокационных, то для перехода от наблюдаемых характеристик метеоров к истинным характеристикам метеорных тел следует учесть избирательность метода наблюдения по отношению к различным параметрам, в первую очередь к скорости метеорных тел. При этом необходимо пользоваться выбранной теоретической моделью метеорных явлений. В харьковских радиолокационных исследованиях была выбрана параметрическая модель, в основе которой лежит имитационное моделирование метеорных явлений. Сформулированы прямая и обратная задачи радиолокации метеоров. Обратная задача косвенных измерений рассмотрена как основа ряда наук, в том числе и метеорной астрономии, метеорный комплекс причислен к сложным стохастическим объектам. Решение обратной задачи в этом случае требует привлечения методов, базирующихся на математическом аппарате теории вероятностей и математической статистики, ориентированных на использование ЭВМ.
Для оценки структуры и параметров модели вероятностного пространства изучаемого объекта по результатам измерительных экспериментов была создана под руководством Ю. И. Волощука автоматизированная система сбора и обработки радиометеорной информации АССОРМИ, представляющая собой комплекс МРЛС-ЭВМ. С помощью апостериорно-модельного подхода для АССОРМИ был разработан алгоритм переработки информации, который позволяет получать статистическим методом усредненные распределения гелиоцентрических скоростей и элементов орбит метеорных тел с массой больше некоторой предельной. Компенсация избирательности производится методом нелинейных преобразований (МНП) в дополнение к весовому. В монографиях 1981 и 1989 гг. описана параметрическая модель, позволяющая прогнозировать оценки временных рядов метеорного потока. Разработана достаточно простая процедура интерпретации численности метеоров, регистрируемая МРЛС в одном пункте. Получены распределения скоростей и плотности радиантов спорадических метеоров по небесной сфере, оценки закона распределения метеорных тел по массе. Для получения оценок плотности потока метеорных тел с массой выше некоторой граничной применено имитационное моделирование. Была решена задача оперативного оценивания безопасности для КА и одна из фундаментальных задач метеорной астрономии, которая ряд лет ставилась перед исследователями метеоров во всем мире: определение притока метеорного вещества на Землю. Методом имитационного моделирования по результатам многолетних измерений численности радиометеоров на статистическом анализаторе, являющемся подсистемой МАРС, получены распределения плотности радиантов по небесной сфере и оценки притока метеороидов с массой больше 10-5 г.