Читаем Правила счета элементов бесконечного множества полностью

где индекс 0 означает, что все числа этого множества не превышают единицы, то есть, перед запятой у них записан 0, а n со стрелкой влево над ним – это обычное натуральное число, записанное после запятой в обратном порядке, "задом наперед", как дробная часть этого элемента множества. Очевидно, это число n является порядковым номером соответствующего элемента множества M0, точки линии.

Теперь возьмем отрезок, линию [0,1] и отождествим каждую точку этой линии с полученной числовой последовательностью (3). Очевидно, что каждая точка отрезка будет единственно отождествлена с единственным числом последовательности, парно. Ни одна точка или число не будут пропущены. Какое бы число мы ни взяли, на линии обязательно будет точка с таким же значением. Наоборот, какую бы мы не взяли точку на линии, этот номер обязательно будет в созданном массиве. Иначе говоря, рассмотренный отрезок числовой прямой [0, 1], континуум оказывается в биективном соответствии со всеми числами созданного множества.

Собственно процесс нумерации элементов массива или точек линии также достаточно очевиден. В этом процессе, как можно обнаружить, точки, элементы линии, числа сформированного ряда, матрицы оказываются расположенными не в виде монотонной последовательности, а "вперемешку".



Рис.2. Нумерация точек отрезка


На рисунке показан фрагмент последовательной нумерации точек, начиная с точки 0,5 и заканчивая на точке 0,31. Мы последовательно рассматриваем фрагмент, точки с натуральными порядковыми номерами 5, 6, 7, 8, 9, 10, 11, 12, 13, по которым из выражения (3) определяем значения этих точек: 0,5 (точка номер 5); 0,6 (точка номер 6); 0,7 (точка номер 7 и так далее); 0,8; 0,9; 0,01 (точка номер 10); 0,11; 0,21; 0,31 (точка номер 13). Как видим, порядковые номера

точек равномерно возрастают, но сами точки при этом "скачут" по линии. Отметим главное: фактическое значение точки "возникает" в самом процессе нумерации. То есть, сначала мы выбираем некоторый или очередной, натуральный порядковый номер точки, а затем определяем её местоположение на линии и присваиваем этой точке выбранный номер.

Собственно говоря, нумерация элементов массива и означает присвоение конкретному элементу некоторого определенного номера, как бы навешивание на элемент таблички с номером. Поэтому выбрав элемент, мы можем увидеть его номер, а выбрав номер, узнать, какому элементу он принадлежит. В рассмотренном случае с нумерацией точек линии натуральный порядковый номер, например, 12 389 принадлежит точке на линии со значением 0,98321. Наоборот, точка линии со значением, например, 0,5612999 имеет в массиве порядковый номер 9 992 165.

Такой же алгоритм можно использовать и для нумерации точек плоских или объемных, многомерных объектов, например, точек куба. В случае многомерных объектов номер преобразуется к виду (3) по методу Кантора, созданного им для отождествления точек линии и квадрата [3, с.77].

Предположим, некая точка куба имеет следующие координаты, в которых буквы α, β и γ обозначают любую цифру в этих числах:



Используя метод Кантора, формируем из этих чисел новое число:



Отсутствующие цифры для какого-либо индекса заменяем нулями. Дробную часть полученного комбинированного числа инвертируем, поворачиваем "задом наперед", согласно (3), и получаем натуральный порядковый номер рассмотренной точки куба. Например, точка куба с координатами p(x, y, z) = (0,123; 0,321; 0,9171) при комбинировании даст число N=139 221 317 001, что означает порядковый номер точки в бесконечном их массиве, равный 100 713 122 931. Понятно, что обратным преобразованием можно так же найти координаты любой точки по её номеру. Например, точка с порядковым номером 1 234 567 890 имеет в кубе координаты p(0,0741; 0,963; 0,852). Рассмотренный вариант относится к кубу с единичным ребром, но он может быть легко расширен на куб с любым размером ребра, а также на объекты вообще с любым числом измерений.

Наконец, метод позволяет перенумеровать и составные элементы: комплексные числа, кватернионы и тому подобные. Например, комплексное число можно представить в виде



В этой записи буквами α и γ обозначены целая часть числа реальной и мнимой части, а буквами β и δ, соответственно, их дробные части. Например:



Перейти на страницу:

Похожие книги

Неправильный лекарь. Том 2
Неправильный лекарь. Том 2

Начало:https://author.today/work/384999Заснул в ординаторской, проснулся в другом теле и другом мире. Да ещё с проникающим ножевым в грудную полость. Вляпался по самый небалуй. Но, стоило осмотреться, а не так уж тут и плохо! Всем правит магия и возможно невозможное. Только для этого надо заново пробудить и расшевелить свой дар. Ого! Да у меня тут сюрприз! Ну что, братцы, заживём на славу! А вон тех уродов на другом берегу Фонтанки это не касается, я им обязательно устрою проблемы, от которых они не отдышатся. Ибо не хрен порядочных людей из себя выводить.Да, теперь я не хирург в нашем, а лекарь в другом, наполненным магией во всех её видах и оттенках мире. Да ещё фамилия какая досталась примечательная, Склифосовский. В этом мире пока о ней знают немногие, но я сделаю так, чтобы она гремела на всю Российскую империю! Поставят памятники и сочинят баллады, славящие мой род в веках!Смелые фантазии, не правда ли? Дело за малым, шаг за шагом превратить их в реальность. И я это сделаю!

Сергей Измайлов

Самиздат, сетевая литература / Городское фэнтези / Попаданцы